skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 17 until 8:00 AM ET on Saturday, May 18 due to maintenance. We apologize for the inconvenience.

This content will become publicly available on September 29, 2024

Title: Facile Photopatterning of Perfusable Microchannels in Synthetic Hydrogels to Recreate Microphysiological Environments

The fabrication of perfusable hydrogels is crucial for recreating in vitro microphysiological environments. Existing strategies to fabricate complex microchannels in hydrogels involve sophisticated equipment/techniques. A cost‐effective, facile, versatile, and ultra‐fast methodology is reported to fabricate perfusable microchannels of complex shapes in photopolymerizable hydrogels without the need of specialized equipment or sophisticated protocols. The methodology utilizes one‐step ultraviolet (UV) light‐triggered cross‐linking and a photomask printed on inexpensive transparent films to photopattern PEG‐norbornene hydrogels. Complex and intricate patterns with high resolution, including perfusable microchannels, can be fabricated in <1 s. The perfusable hydrogel is integrated into a custom‐made microfluidic device that permits connection to external pump systems, allowing continuous fluid perfusion into the microchannels. Under dynamic culture, human endothelial cells form a functional and confluent endothelial monolayer that remains viable for at least 7 days and respond to inflammatory stimuli. Finally, approach to photopattern norbornene hyaluronic acid hydrogels is adapted, highlighting the versatility of the technique. This study presents an innovative strategy to simplify and reduce the cost of biofabrication techniques for developing functional in vitro models using perfusable three‐dimensional (3D) hydrogels. The approach offers a novel solution to overcome the complexities associated with existing methods, allowing engineering advanced in vitro microphysiological environments.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    As bioprinting advances into clinical relevance with patient-specific tissue and organ constructs, it must be capable of multi-material fabrication at high resolutions to accurately mimick the complex tissue structures found in the body. One of the most fundamental structures to regenerative medicine is microvasculature. Its continuous hierarchical branching vessel networks bridge surgically manipulatable arteries (∼1–6 mm) to capillary beds (∼10µm). Microvascular perfusion must be established quickly for autologous, allogeneic, or tissue engineered grafts to survive implantation and heal in place. However, traditional syringe-based bioprinting techniques have struggled to produce perfusable constructs with hierarchical branching at the resolution of the arterioles (∼100-10µm) found in microvascular tissues. This study introduces the novel CEVIC bioprinting device (i.e.ContinuouslyExtrudedVariableInternalChanneling), a multi-material technology that breaks the current extrusion-based bioprinting paradigm of pushing cell-laden hydrogels through a nozzle as filaments, instead, in the version explored here, extruding thin, wide cell-laden hydrogel sheets. The CEVIC device adapts the chaotic printing approach to control the width and number of microchannels within the construct as it is extruded (i.e. on-the-fly). Utilizing novel flow valve designs, this strategy can produce continuous gradients varying geometry and materials across the construct and hierarchical branching channels with average widths ranging from 621.5 ± 42.92%µm to 11.67 ± 14.99%µm, respectively, encompassing the resolution range of microvascular vessels. These constructs can also include fugitive/sacrificial ink that vacates to leave demonstrably perfusable channels. In a proof-of-concept experiment, a co-culture of two microvascular cell types, endothelial cells and pericytes, sustained over 90% viability throughout 1 week in microchannels within CEVIC-produced gelatin methacryloyl-sodium alginate hydrogel constructs. These results justify further exploration of generating CEVIC-bioprinted microvasculature, such as pre-culturing and implantation studies.

    more » « less
  2. Abstract

    Engineering functional human tissues in vitro is currently limited by difficulty replicating the small caliber, complex connectivity, cellularity, and 3D curvature of the native microvasculature. Multiphoton ablation has emerged as a promising technique for fabrication of microvascular structures with high resolution and full 3D control, but cellularization and perfusion of complex capillary‐scale structures has remained challenging. Here, multiphoton ablation combined with guided endothelial cell growth from pre‐formed microvessels is used to successfully create perfusable and cellularized organ‐specific microvascular structures at anatomic scale within collagen hydrogels. Fabrication and perfusion of model 3D pulmonary and renal microvascular beds is demonstrated, as is replication and perfusion of a brain microvascular unit derived from in vivo data. Successful endothelialization and blood perfusion of a kidney‐specific microvascular structure is achieved, using laser‐guided angiogenesis. Finally, proof‐of‐concept hierarchical blood vessels and complex multicellular models are created, using multistep patterning with multiphoton ablation techniques. These successes open new doors for the creation of engineered tissues and organ‐on‐a‐chip devices.

    more » « less
  3. Abstract

    3D‐printing is emerging as a technology to introduce microchannels into hydrogels, for the perfusion of engineered constructs. Although numerous techniques have been developed, new techniques are still needed to obtain the complex geometries of blood vessels and with materials that permit desired cellular responses. Here, a printing process where a shear‐thinning and self‐healing hydrogel “ink” is injected directly into a “support” hydrogel with similar properties is reported. The support hydrogel is further engineered to undergo stabilization through a thiol‐ene reaction, permitting (i) the washing of the ink to produce microchannels and (ii) tunable properties depending on the crosslinker design. When adhesive peptides are included in the support hydrogel, endothelial cells form confluent monolayers within the channels, across a range of printed configurations (e.g., straight, stenosis, spiral). When protease‐degradable crosslinkers are used for the support hydrogel and gradients of angiogenic factors are introduced, endothelial cells sprout into the support hydrogel in the direction of the gradient. This printing approach is used to investigate the influence of channel curvature on angiogenic sprouting and increased sprouting is observed at curved locations. Ultimately, this technique can be used for a range of biomedical applications, from engineering vascularized tissue constructs to modeling in vitro cultures.

    more » « less
  4. Abstract

    Granular hydrogels have emerged as a new class of injectable and porous biomaterials that improve integration with host tissue when compared to solid hydrogels. Granular hydrogels are typically prepared using spherical particles and this study considers whether particle shape (i.e., isotropic spheres vs anisotropic rods) influences granular hydrogel properties and cellular invasion. Simulations predict that anisotropic rods influence pore shape and interconnectivity, as well as bead transport through granular assemblies. Photo‐cross‐linkable norbornene‐modified hyaluronic acid is used to produce spherical and rod‐shaped particles using microfluidic droplet generators and formed into shear‐thinning and self‐healing granular hydrogels, with particle shape influencing mechanics and injectability. Rod‐shaped particles form granular hydrogels that have anisotropic and interconnected pores, with pore size and number influenced by particle shape and degree of packing. Robust in vitro sprouting of endothelial cells from embedded cellular spheroids is observed with rod‐shaped particles, including higher sprouting densities and sprout lengths when compared to hydrogels with spherical particles. Cell and vessel invasion into granular hydrogels when injected subcutaneously in vivo are significantly greater with rod‐shaped particles, whereas a gradient of cellularity is observed with spherical particles. Overall, this work demonstrates potentially superior functional properties of granular hydrogels with rod‐shaped particles for tissue repair.

    more » « less
  5. Abstract

    While the human body has many different examples of perfusable structures with complex geometries, biofabrication methods to replicate this complexity are still lacking. Specifically, the fabrication of self‐supporting, branched networks with multiple channel diameters is particularly challenging. Herein, the Gelation of Uniform Interfacial Diffusant in Embedded 3D Printing (GUIDE‐3DP) approach for constructing perfusable networks of interconnected channels with precise control over branching geometries and vessel sizes is presented. To achieve user‐specified channel dimensions, this technique leverages the predictable diffusion of cross‐linking reaction‐initiators released from sacrificial inks printed within a hydrogel precursor. The versatility of GUIDE‐3DP to be adapted for use with diverse physicochemical cross‐linking mechanisms is demonstrated by designing seven printable material systems. Importantly, GUIDE‐3DP allows for the independent tunability of both the inner and outer diameters of the printed channels and the ability to fabricate seamless junctions at branch points. This 3D bioprinting platform is uniquely suited for fabricating lumenized structures with complex shapes characteristic of multiple hollow vessels throughout the body. As an exemplary application, the fabrication of vasculature‐like networks lined with endothelial cells is demonstrated. GUIDE‐3DP represents an important advance toward the fabrication of self‐supporting, physiologically relevant networks with intricate and perfusable geometries.

    more » « less