- Award ID(s):
- 2034245
- NSF-PAR ID:
- 10483495
- Publisher / Repository:
- ACS publications
- Date Published:
- Journal Name:
- ACS Sensors
- Volume:
- 8
- Issue:
- 1
- ISSN:
- 2379-3694
- Page Range / eLocation ID:
- 197 to 206
- Subject(s) / Keyword(s):
- ionic liquid miniaturized electrochemical sensor greenhouse gas carbon dioxide
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Integrating transducer/sensing materials into microfluidic platforms has enhanced gas sensors′ sensitivity, selectivity, and response time while facilitating miniaturization. In this manuscript, microfluidics has been integrated with non-planar microelectrode array and functionalized ionic liquids (ILs) to develop a novel miniaturized electrochemical gas sensor architecture. The sensor employs the IL 1-ethyl-3-methylimidazolium 2-cyanopyrolide ([EMIM][2-CNpyr]) as the electrolyte and capture molecule for detecting carbon dioxide (CO 2 ). The three-layer architecture of the sensor consists of a microchannel with the IL sandwiched between glass slides containing microelectrode arrays, forming a non-planar structure. This design facilitates electric field penetration through the IL, capturing CO 2 binding perturbations throughout the channel volume to enhance sensitivity. CO 2 binding with [EMIM][2-CNpyr] generates carboxylate ([EMIM] + -CO2 − ]), carbamate ([2-CNpyr]-CO2 − ]), and pyrrole-2-carbonitrile (2-CNpyrH) species, significantly decreasing the conductivity. The viscosity is also increased, leading to a further decrease in conductivity. These cumulative effects increase charge transfer resistance in the impedance spectrum, allowing a linear calibration curve obtained using Langmuir Isotherm. The sensitivity and reproducibility in CO 2 detection are demonstrated by two electrode configurations using the calibration curve. The developed sensor offers a versatile platform for future applications.more » « less
-
null (Ed.)Three new isomeric 6FDA-based polyimide-ionenes, with imidazolium moieties and varying regiochemistry (para-, meta-, and ortho- connectivity), and composites with three different ionic liquids (ILs) have been developed as gas separation membranes. The structural-property relationships and gas separation behaviors of the newly developed 6FDA polyimide-ionene + IL composites have been extensively studied. All the 6FDA-based polyimide-ionenes exhibited good compatibility with the ILs and produced homogeneous hybrid membranes with the high thermal stability of ~380 °C. Particularly, [6FDA I4A pXy][Tf2N] ionene + IL hybrids having [C4mim][Tf2N] and [Bnmim][Tf2N] ILs offered mechanically stable matrixes with high CO2 affinity. The permeability of CO2 was increased by factors of 2 and 3 for C4mim and Bnmim hybrids (2.15 to 6.32 barrers), respectively, compared to the neat [6FDA I4A pXy][Tf2N] without sacrificing their permselectivity for CO2/CH4 and CO2/N2 gas pairs.more » « less
-
Serotonin (5-HT) is a critical neurotransmitter involved in many neuronal functions, and 5-HT depletion has been linked to several mental diseases. The fast release and clearance of serotonin in the extracellular space, low analyte concentrations, and a multitude of interfering species make the detection of serotonin challenging. This work presents an electrochemical aptamer-based biosensing platform that can monitor 5-HT continuously with high sensitivity and selectivity. Our electrochemical sensor showed a response time of approximately 1 min to a step change in the serotonin concentration in continuous monitoring using a single-frequency EIS (electrochemical impedance spectroscopy) technique. The developed sensing platform was able to detect 5-HT in the range of 25–150 nM in the continuous sample fluid flow with a detection limit (LOD) of 5.6 nM. The electrochemical sensor showed promising selectivity against other species with similar chemical structures and redox potentials, including dopamine (DA), norepinephrine (NE), L-tryptophan (L-TP), 5-hydroxyindoleacetic acid (5-HIAA), and 5-hydroxytryptophan (5-HTP). The proposed sensing platform is able to achieve high selectivity in the nanomolar range continuously in real-time, demonstrating the potential for monitoring serotonin from neurons in organ-on-a-chip or brain-on-a-chip-based platforms.
-
While classical electrochemical impedance spectroscopy (EIS) focuses on measurements from a single working electrode, dense active microelectrode arrays offer opportunities for new modes of sensing. Here we present experimental results with an integrated sensor array for electrochemical imaging. The system uses a 100 x 100 custom CMOS electrode array with 10 micron pixels, which measures impedance at frequencies up to 100 MHz. The sensor chip is uniquely designed to take advantage of the electrostatic coupling between groups of nearby pixels to re-shape the local electric field. Multiple bias voltages and clock phases create new types of signal diversity that will enable enhanced sensing modes for computational imaging and impedance tomography.more » « less
-
Formation of C‐N bonds through the electrochemical utilization of CO2 and nitrogen containing compounds (N‐compounds) is appealing for the purpose of converting waste and readily available sources or pollutants into value added chemicals at ambient conditions. Existing research predominantly explores these electrochemical reactions independently, often in aqueous electrolytes, leading to challenges associated with competitive hydrogen evolution reaction (HER), low product selectivity, and yield. Functional electrolytes such as those containing ionic liquids (ILs) present selective solubility to the solute reactants and present unique interactions with the electrode surface that can suppress the undesired side reaction HER while simultaneously co‐catalyzing the conversion of CO2 and N‐compounds such as N2, NO, NO2, andNO3. In this concept paper, we discuss how the microenvironment enabled by ILs can be leveraged to stabilize reaction intermediates at the electrode‐electrolyte interface, thereby promoting C‐N bond formation on an active electrode surface at reduced overpotential, with the case study of CO2 and N‐compounds co‐catalysis to generate urea.