Integrating transducer/sensing materials into microfluidic platforms has enhanced gas sensors′ sensitivity, selectivity, and response time while facilitating miniaturization. In this manuscript, microfluidics has been integrated with non-planar microelectrode array and functionalized ionic liquids (ILs) to develop a novel miniaturized electrochemical gas sensor architecture. The sensor employs the IL 1-ethyl-3-methylimidazolium 2-cyanopyrolide ([EMIM][2-CNpyr]) as the electrolyte and capture molecule for detecting carbon dioxide (CO 2 ). The three-layer architecture of the sensor consists of a microchannel with the IL sandwiched between glass slides containing microelectrode arrays, forming a non-planar structure. This design facilitates electric field penetration through the IL, capturing CO 2 binding perturbations throughout the channel volume to enhance sensitivity. CO 2 binding with [EMIM][2-CNpyr] generates carboxylate ([EMIM] + -CO2 − ]), carbamate ([2-CNpyr]-CO2 − ]), and pyrrole-2-carbonitrile (2-CNpyrH) species, significantly decreasing the conductivity. The viscosity is also increased, leading to a further decrease in conductivity. These cumulative effects increase charge transfer resistance in the impedance spectrum, allowing a linear calibration curve obtained using Langmuir Isotherm. The sensitivity and reproducibility in CO 2 detection are demonstrated by two electrode configurations using the calibration curve. The developed sensor offers a versatile platform for future applications. 
                        more » 
                        « less   
                    
                            
                            Single-Frequency Impedance Studies on an Ionic Liquid-Based Miniaturized Electrochemical Sensor toward Continuous Low-Temperature CO 2 Monitoring
                        
                    
    
            Continuous greenhouse gas monitoring at sub-zero temperatures is needed for monitoring greenhouse gas emission in cold environments such as the Arctic tundra. This work reports a single-frequency electrochemical impedance sensing (SF-EIS) method for real-time continuous monitoring of carbon dioxide (CO2) at a wide range of temperatures (−15 to 40 °C) by using robust ionic liquid (IL) sensing materials and noninvasive, low-power, and low-cost impedance readout mechanisms since they cause minimal changes in the sensing interface, avoiding the baseline change for long-term continuous sensing. In addition, a miniaturized planar electrochemical sensor was fabricated that incorporates a hydrophobic 1-butyl-1-methylpyrrolidinium bis(trifluromethylsulfonyl)imide ([Bmpy][NTf2]) IL electrolyte and Pt black electrode materials. The high viscosity of the ILs facilitates the formation of thin, ordered, and concentrated layers of ionic charges, and the inverse relationship of IL viscosity with temperature makes them especially suited for impedance sensing at low temperatures. The unique low-temperature properties of ILs together with EIS transduction mechanisms are shown to be sensitive and selective for continuously monitoring CO2 at a −15 to 40 °C temperature range via impedance changes at a specifically selected frequency at the open circuit potential (OCP). Molecular dynamics simulations revealed insights into the structure and dynamics of the IL at varying temperatures in the presence of methane and CO2 and provided potential explanations for the observed sensing results. The miniaturized and flexible planar electrochemical sensor with the [Bmpy][NTf2] electrolyte was tested repeatedly at subzero temperatures over a 58-day period, during which good stability and repeatability were obtained. The CO2 impedance sensor was further tested for sensing CO2 from soil samples and shows promising results for their use in real-time monitoring of greenhouse gas emissions in cold temperatures such as permafrost soils. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2034245
- PAR ID:
- 10483495
- Publisher / Repository:
- ACS publications
- Date Published:
- Journal Name:
- ACS Sensors
- Volume:
- 8
- Issue:
- 1
- ISSN:
- 2379-3694
- Page Range / eLocation ID:
- 197 to 206
- Subject(s) / Keyword(s):
- ionic liquid miniaturized electrochemical sensor greenhouse gas carbon dioxide
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Serotonin (5-HT) is a critical neurotransmitter involved in many neuronal functions, and 5-HT depletion has been linked to several mental diseases. The fast release and clearance of serotonin in the extracellular space, low analyte concentrations, and a multitude of interfering species make the detection of serotonin challenging. This work presents an electrochemical aptamer-based biosensing platform that can monitor 5-HT continuously with high sensitivity and selectivity. Our electrochemical sensor showed a response time of approximately 1 min to a step change in the serotonin concentration in continuous monitoring using a single-frequency EIS (electrochemical impedance spectroscopy) technique. The developed sensing platform was able to detect 5-HT in the range of 25–150 nM in the continuous sample fluid flow with a detection limit (LOD) of 5.6 nM. The electrochemical sensor showed promising selectivity against other species with similar chemical structures and redox potentials, including dopamine (DA), norepinephrine (NE), L-tryptophan (L-TP), 5-hydroxyindoleacetic acid (5-HIAA), and 5-hydroxytryptophan (5-HTP). The proposed sensing platform is able to achieve high selectivity in the nanomolar range continuously in real-time, demonstrating the potential for monitoring serotonin from neurons in organ-on-a-chip or brain-on-a-chip-based platforms.more » « less
- 
            null (Ed.)Three new isomeric 6FDA-based polyimide-ionenes, with imidazolium moieties and varying regiochemistry (para-, meta-, and ortho- connectivity), and composites with three different ionic liquids (ILs) have been developed as gas separation membranes. The structural-property relationships and gas separation behaviors of the newly developed 6FDA polyimide-ionene + IL composites have been extensively studied. All the 6FDA-based polyimide-ionenes exhibited good compatibility with the ILs and produced homogeneous hybrid membranes with the high thermal stability of ~380 °C. Particularly, [6FDA I4A pXy][Tf2N] ionene + IL hybrids having [C4mim][Tf2N] and [Bnmim][Tf2N] ILs offered mechanically stable matrixes with high CO2 affinity. The permeability of CO2 was increased by factors of 2 and 3 for C4mim and Bnmim hybrids (2.15 to 6.32 barrers), respectively, compared to the neat [6FDA I4A pXy][Tf2N] without sacrificing their permselectivity for CO2/CH4 and CO2/N2 gas pairs.more » « less
- 
            Abstract Electrochemical CO2reduction (CO2RR) on copper (Cu) shows promise for higher‐value products beyond CO. However, challenges such as the limited CO2solubility, high overpotentials, and the competing hydrogen evolution reaction (HER) in aqueous electrolytes hinder the practical realization. We propose a functionalized ionic liquid (IL) which generates ion‐CO2adducts and a hydrogen bond donor (HBD) upon CO2absorption to modulate CO2RR on Cu in a non‐aqueous electrolyte. As revealed by transient voltammetry, electrochemical impedance spectroscopy (EIS), and in situ surface‐enhanced Raman spectroscopy (SERS) complemented with image charge augmented quantum‐mechanical/molecular mechanics (IC‐QM/MM) computations, a unique microenvironment is constructed. In this microenvironment, the catalytic activity is primarily governed by the IL and HBD concentrations; former controlling the double layer thickness and the latter modulating the local proton availability. This translates to ample CO2availability, reduced overpotential, and suppressed HER where C4products are obtained. This study deepens the understanding of electrolyte effects in CO2RR and the role of IL ions towards electrocatalytic microenvironment design.more » « less
- 
            CO2 electroreduction (CO2ER) by using renewable energy resources is a promising method to mitigate the CO2 level in the atmosphere as well as producing valuable chemicals. Local environment at the electrode-electrolyte interface plays a key role in CO2ER activity and selectivity along with its competing hydrogen evolution reaction (HER). In addition to the catalyst and reactor design, electrolyte has also a significant impact on the interface. Herein, electrolyte additives were used to modify the local environment around the Cu catalyst during CO2ER. To this purpose, 10mM of ionic additives with bis(trifluoromethylsulfonyl)imide ([NTF2]-) and dicyanamide ([DCA]-) as anions and 1-butyl-3-methylimidazolium ([BMIM]+), potassium (K+), or sodium (Na+) as cations have been added to an aqueous potassium bicarbonate solution (0.1 M KHCO3). COMSOL Multiphysics was also used to calculate the local pH and CO2 concentration at electrode-electrolyte interface in different electrolytes. Results showed that the local environment modifications by the electrolyte additives altered the activity and selectivity of Cu in CO2ER. It was found that the CO2ER activity at -0.92 V was enhanced when using anion with high CO2 affinity and high hydrophobicity such as [NTF2]–. Among [NTF2]–-based additives, [BMIM][NTF2] had a higher faradaic efficiency (FE) for formate (38.7%) compared to K[NTF2] (23.2%) and Na[NTF2] (18.5%) at -0.92 V likely due to the presence of imidazolium cation which can further stabilize the intermediates on the surface and enhance CO2ER. Electrolytes containing [DCA]–-based additives with high hydrophilicity and low CO2 affinity had a very high HER selectivity (>90% FEH2) and low CO2ER selectivity regardless of the cation nature. This observation is attributed to the presence of hydrophilic [BMIM][DCA] in the vicinity of the catalyst which impacts the microenvironment around the catalyst. We observed that [DCA]– anions have a high affinity to adsorb on Cu catalysts as soon as the catalyst is submerged in the electrolyte. Although FTIR showed that [DCA]– anions desorb from the surface at negative potentials, it is likely that [DCA]– anions still remain in the proximity of the electrode, next to the adsorbed cations, impacting the transport of H2O and CO2, and altering the product selectivity. COMSOL calculations showed that the local pH is directly proportional to the H2 evolution activity. Also, hydrophilic salts such as those with the [DCA]– anion had a more alkaline local pH which leads to a lower CO2 concentration in the vicinity of the catalyst.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    