Membrane bending is a ubiquitous cellular process that is required for membrane traffic, cell motility, organelle biogenesis, and cell division. Proteins that bind to membranes using specific structural features, such as wedge-like amphipathic helices and crescent-shaped scaffolds, are thought to be the primary drivers of membrane bending. However, many membrane-binding proteins have substantial regions of intrinsic disorder which lack a stable three-dimensional structure. Interestingly, many of these disordered domains have recently been found to form networks stabilized by weak, multivalent contacts, leading to assembly of protein liquid phases on membrane surfaces. Here we ask how membrane-associated protein liquids impact membrane curvature. We find that protein phase separation on the surfaces of synthetic and cell-derived membrane vesicles creates a substantial compressive stress in the plane of the membrane. This stress drives the membrane to bend inward, creating protein-lined membrane tubules. A simple mechanical model of this process accurately predicts the experimentally measured relationship between the rigidity of the membrane and the diameter of the membrane tubules. Discovery of this mechanism, which may be relevant to a broad range of cellular protrusions, illustrates that membrane remodeling is not exclusive to structured scaffolds but can also be driven by the rapidly emerging class of liquid-like protein networks that assemble at membranes.
more »
« less
The Membrane Phase Transition Gives Rise to Responsive Plasma Membrane Structure and Function
Several groups have recently reported evidence for the emergence of domains in cell plasma membranes when membrane proteins are organized by ligand binding or assembly of membrane proximal scaffolds. These domains recruit and retain components that favor the liquid-ordered phase, adding to a decades-old literature interrogating the contribution of membrane phase separation in plasma membrane organization and function. Here we propose that both past and present observations are consistent with a model in which membranes have a high compositional susceptibility, arising from their thermodynamic state in a single phase that is close to a miscibility phase transition. This rigorous framework naturally allows for both transient structure in the form of composition fluctuations and long-lived structure in the form of induced domains. In this way, the biological tuning of plasma membrane composition enables a responsive compositional landscape that facilitates and augments cellular biochemistry vital to plasma membrane functions.
more »
« less
- Award ID(s):
- 1905600
- PAR ID:
- 10483637
- Publisher / Repository:
- Cold Spring Harbor Perspectives in Biology
- Date Published:
- Journal Name:
- Cold Spring Harbor Perspectives in Biology
- Volume:
- 15
- Issue:
- 11
- ISSN:
- 1943-0264
- Page Range / eLocation ID:
- a041395
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Cell signaling is an important process involving complex interactions between lipids and proteins. The myristoylated alanine-rich C-kinase substrate (MARCKS) has been established as a key signaling regulator, serving a range of biological roles. Its effector domain (ED), which anchors the protein to the plasma membrane, induces domain formation in membranes containing phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylserine (PS). The mechanisms governing the MARCKS-ED binding to membranes remain elusive. Here, we investigate the composition-dependent affinity and MARCKS-ED-binding-induced changes in interfacial environments using two-dimensional infrared spectroscopy and fluorescence anisotropy. Both negatively charged lipids facilitate the MARCKS-ED binding to lipid vesicles. Although the hydrogen-bonding structure at the lipid-water interface remains comparable across vesicles with varied lipid compositions, the dynamics of interfacial water show divergent patterns due to specific interactions between lipids and peptides. Our findings also reveal that PIP2 becomes sequestered by bound peptides, while the distribution of PS exhibits no discernible change upon peptide binding. Interestingly, PIP2 and PS become colocalized into domains both in the presence and absence of MARCKS-ED. More broadly, this work offers molecular insights into the effects of membrane composition on binding.more » « less
-
Lipid rafts are nanoscopic assemblies of sphingolipids, cholesterol, and specific membrane proteins. They are believed to underlie the experimentally observed lateral heterogeneity of eukaryotic plasma membranes and implicated in many cellular processes, such as signaling and trafficking. Ternary model membranes consisting of saturated lipids, unsaturated lipids, and cholesterol are common proxies because they exhibit phase coexistence between a liquid-ordered (lo) and liquid-disordered (ld) phase and an associated critical point. However, plasma membranes are also asymmetric in terms of lipid type, lipid abundance, leaflet tension, and corresponding cholesterol distribution, suggesting that rafts cannot be examined separately from questions about elasticity, curvature torques, and internal mechanical stresses. Unfortunately, it is challenging to capture this wide range of physical phenomenology in a single model that can access sufficiently long length- and time scales. Here we extend the highly coarse-grained Cooke model for lipids, which has been extensively characterized on the curvature-elastic front, to also represent raft-like lo/ld mixing thermodynamics. In particular, we capture the shape and tie lines of a coexistence region that narrows upon cholesterol addition, terminates at a critical point, and has coexisting phases that reflect key differences in membrane order and lipid packing. We furthermore examine elasticity and lipid diffusion for both phase separated and pure systems and how they change upon the addition of cholesterol. We anticipate that this model will enable significant insight into lo/ld phase separation and the associated question of lipid rafts for membranes that have compositionally distinct leaflets that are likely under differential stress—like the plasma membrane.more » « less
-
Abstract The spatial organization of cell membrane glycoproteins and glycolipids is critical for mediating the binding of ligands, receptors, and macromolecules on the plasma membrane. However, we currently do not have the methods to quantify the spatial heterogeneities of macromolecular crowding on live cell surfaces. In this work, we combine experiment and simulation to report crowding heterogeneities on reconstituted membranes and live cell membranes with nanometer spatial resolution. By quantifying the effective binding affinity of IgG monoclonal antibodies to engineered antigen sensors, we discover sharp gradients in crowding within a few nanometers of the crowded membrane surface. Our measurements on human cancer cells support the hypothesis that raft-like membrane domains exclude bulky membrane proteins and glycoproteins. Our facile and high-throughput method to quantify spatial crowding heterogeneities on live cell membranes may facilitate monoclonal antibody design and provide a mechanistic understanding of plasma membrane biophysical organization.more » « less
-
The initial interactions of engineered nanoparticles (NPs) with living cells are governed by physicochemical properties of the NP and the molecular composition and structure of the cell membrane. Eukaryotic cell membranes contain lipid rafts – liquid-ordered nanodomains involved in membrane trafficking and molecular signaling. However, the impact of these membrane structures on cellular interactions of NPs remains unclear. Here we investigate the role of membrane domains in the interactions of primary amine-terminated quantum dots (Qdots) with liquid-ordered domains or lipid rafts in model membranes and intact cells, respectively. Using correlative atomic force and fluorescence microscopy, we found that the Qdots preferentially localized to boundaries between liquid-ordered and liquid-disordered phases in supported bilayers. The Qdots also induced holes at these phase boundaries. Using super resolution fluorescence microscopy (STORM), we found that the Qdots preferentially co-localized with lipid rafts in the membrane of intact trout gill epithelial cells – a model cell type for environmental exposures. Our observations uncovered preferential interactions of amine-terminated Qdots with liquid-ordered domains and their boundaries, possibly due to membrane curvature at phase boundaries creating energetically favorable sites for NP interactions. The preferential interaction of the Qdots with lipid rafts supports their potential internalization via lipid raft-mediated endocytosis and interactions with raft-resident signaling molecules.more » « less
An official website of the United States government

