skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Longevity of Bioretention Depths for Preventing Acute Toxicity from Urban Stormwater Runoff
Urbanization poses increasing threats to aquatic ecosystems, including increased chemical loading. Of relatively recent concern is the potential of urban stormwater runoff to facilitate the spread of microplastics (MPs), including tire wear particles. Previous studies have demonstrated the effectiveness of bioretention treatment systems in treating runoff, thereby reducing chemical loading into surface waters and preventing acutely lethal and sublethal effects to aquatic organisms. In this study, we aimed to determine the effectiveness and longevity of bioretention soil media (BSM) at various infiltration depths, including the shallower depth currently required by the Washington Department of Ecology (18”). Experimental columns containing three different BSM depths were dosed with roadway runoff at an accelerated rate to simulate nine water years in approximately 30 calendar months. The chemical and biological effectiveness of the columns in treating runoff was assessed by analyzing influent/effluent chemistry and characterizing the health of juvenile coho salmon (Oncorhynchus kisutch). Bioretention treatment efficiently removed copper, zinc, total PAHs, and total suspended solids (> 70% removal). Influent stormwater runoff was acutely lethal to juvenile coho salmon (88, 90, 100, and 56.3% mortality in four exposures across the nine accelerated years). However, bioretention treatment was protective of coho, altogether preventing mortality for all treatment depths in three exposures and all but one depth in the last exposure, likely due to overflow when influent flow exceeded the ponding capacity of some of the columns. This study is ongoing and will continue to assess bioretention effectiveness through 10 accelerated years. Future research should consider the ability of bioretention systems to remove MPs and associated pollutants in runoff and explore the fate of MP-contaminant complexes in bioretention systems. Although contaminants themselves, MPs can also act as vectors of other contaminants of concern in aquatic ecosystems, including antibiotic resistance genes (ARGs). Contaminants co-occurring in runoff (e.g., heavy metals) can stimulate the selection or amplification of these ARGs. If left untreated, runoff carrying ARGs to surface waters could increase resistance in environmental bacteria and risks to human health.  more » « less
Award ID(s):
2129531
PAR ID:
10483666
Author(s) / Creator(s):
Publisher / Repository:
ASCE EWRI
Date Published:
Journal Name:
EWRI Low Impact Development Congress
Format(s):
Medium: X
Location:
Oklahoma City, OK
Sponsoring Org:
National Science Foundation
More Like this
  1. In U.S. Pacific Northwest coho salmon (Oncorhynchus kisutch), stormwater exposure annually causes unexplained acute mortality when adult salmon migrate to urban creeks to reproduce. By investigating this phenomenon, we identified a highly toxic quinone transformation product ofN-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD), a globally ubiquitous tire rubber antioxidant. Retrospective analysis of representative roadway runoff and stormwater-affected creeks of the U.S. West Coast indicated widespread occurrence of 6PPD-quinone (<0.3 to 19 micrograms per liter) at toxic concentrations (median lethal concentration of 0.8 ± 0.16 micrograms per liter). These results reveal unanticipated risks of 6PPD antioxidants to an aquatic species and imply toxicological relevance for dissipated tire rubber residues. 
    more » « less
  2. Plastics are extensively used in agriculture, but their weathering and degradation generates microplastics (MPs) that can be carried by runoff into water bodies where they can accumulate and impact wildlife. Due to its physicochemical properties, biochar has shown promise in mitigating contaminants in agricultural runoff. However, few studies have examined its effectiveness at removing MPs. In this study, we assessed MP pollution (>30 μm) in runoff from a farm in the Mississippi Delta and examined the effectiveness of biochar (pinewood and sugarcane) to remove MPs from aqueous solutions. Using micro-Fourier Transform Infrared spectroscopy (µ-FTIR), we observed an average of 237 MPs/L (range 27–609) in the runoff, with most particles identified as polyethylene, polyamide, polyvinyl chloride, polyurethane, acrylonitrile butadiene styrene, and polyarylamide. Biochar columns effectively removed MPs from runoff samples with reductions ranging from 86.6% to 92.6%. MPs of different sizes, shapes, and types were stained with Nile red dye (to facilitate observation by fluorescence) and quantified their downward progress with multiple column volumes of water and wet/dry cycles. Smaller MPs penetrated the columns further, but ≥90% of MPs were retained in the ∼20 cm columns regardless of their shape, size, and type. We attribute these results to physical entrapment, hydrophobic behaviors, and electrostatic interactions. Overall, this proof-of-concept work suggests biochar may serve as a cost-effective approach to remove MPs from runoff, and that subsequent field studies are warranted. 
    more » « less
  3. Retrofitting urban watersheds with wireless sensing and control technologies will enable the next generation of autonomous water systems. While many studies have highlighted the benefits of real-time controlled gray infrastructure, few have evaluated real-time controlled green infrastructure. Motivated by a controlled bioretention site where phosphorus is a major runoff pollutant, phosphorus removal was simulated over a range of influent concentrations and storm conditions for three scenarios: a passive, uncontrolled bioretention cell (baseline), a real-time controlled cell (autonomous upgrade), and a cell with soil amendments (passive upgrade). Results suggest the autonomous upgrade matched the pollutant treatment performance of the baseline scenario in half the spatial footprint. The autonomous upgrade also matched the performance of the passive upgrade; suggesting real-time control may provide a ‘digital’ alternative to existing, passive upgrades. These findings may help site- and cost-constrained stormwater managers meet their water quality goals. 
    more » « less
  4. Abstract Extreme weather and the proliferation of impervious areas in urban watersheds increases the frequency of flood events and deepens water quality concerns. Bioretention is a type of green infrastructure practice developed to mitigate these impacts by reducing peak flows, runoff volume, and nutrient loads in stormwater. However, studies have shown inconsistency in the ability of bioretention to manage some pollutants, particularly some forms of nitrogen. Innovative sensor and control technologies are being tested to actively manage urban stormwater, primarily in open water stormwater systems such as wet ponds. Through these cyber-physical controls, it may be possible to optimize storage time and/or soil moisture dynamics within bioretention cells to create more favorable conditions for water quality improvements. A column study testing the influence of active control on bioretention system performance was conducted over a nine-week period. Active control columns were regulated based on either maintaining a specific water level or soil moisture content and were compared to free draining (FD) and internal water storage standards. Actively controlled bioretention columns performed similarly, with the soil moisture-based control showing the best performance with over 86% removal of metals and TSS while also exhibiting the highest ammonium removal (43%) and second highest nitrate removal (74%). While all column types showed mostly similar TSS and metal removal trends (median 94 and 98%, respectively), traditionally FD and internal water storage configurations promoted aerobic and anaerobic processes, respectively, which suggests that actively controlled systems have greater potential for targeting both processes. The results suggest that active controls can improve upon standard bioretention designs, but further optimization is required to balance the water quality benefits gained by retention time against storage needs for impending storms. 
    more » « less
  5. Predation is a major source of mortality in the early life stages of fishes and a driving force in shaping fish populations. Theoretical, modeling, and laboratory studies have generated hypotheses that larval fish size, age, growth rate, and development rate affect their susceptibility to predation. Empirical data on predator selection in the wild are challenging to obtain, and most selective mortality studies must repeatedly sample populations of survivors to indirectly examine survivorship. While valuable on a population scale, these approaches can obscure selection by particular predators. In May 2018, along the coast of Washington, USA, we simultaneously collected juvenile quillback rockfish Sebastes maliger from both the environment and the stomachs of juvenile coho salmon Oncorhynchus kisutch . We used otolith microstructure analysis to examine whether juvenile coho salmon were age-, size-, and/or growth-selective predators of juvenile quillback rockfish. Our results indicate that juvenile rockfish consumed by salmon were significantly smaller, slower growing at capture, and younger than surviving (unconsumed) juvenile rockfish, providing direct evidence that juvenile coho salmon are selective predators on juvenile quillback rockfish. These differences in early life history traits between consumed and surviving rockfish are related to timing of parturition and the environmental conditions larval rockfish experienced, suggesting that maternal effects may substantially influence survival at this stage. Our results demonstrate that variability in timing of parturition and sea surface temperature leads to tradeoffs in early life history traits between growth in the larval stage and survival when encountering predators in the pelagic juvenile stage. 
    more » « less