Beyond its crucial role as a tight barrier to protect the nervous system, the Blood–Brain Barrier (BBB) is increasingly being recognized for its physiological processes that affect brain function and behavior. In Drosophila melanogaster, the BBB expresses sex-specific transcripts, and a change in the sexual identity of adult BBB cells results in a significant reduction in male courtship behavior. The molecular nature of this BBB/brain interaction and the molecules that mediate it are unknown. Here we feminize BBB cells by targeted expression of the Drosophila female-specific master regulator TraF in otherwise normal males. We examined the effect on RNA expression in dissected brains by RNA sequencing. We find that 283 transcripts change in comparison to normal control males. Transcripts representing cell signaling processes and synaptic communication are enriched, as are hormonal mediators. These transcripts provide a valuable resource for addressing questions about BBB and brain interaction. 
                        more » 
                        « less   
                    
                            
                            Optimization and Technical Considerations for the Dye-Exclusion Protocol Used to Assess Blood–Brain Barrier Integrity in Adult Drosophila melanogaster
                        
                    
    
            The blood–brain barrier (BBB) is a multicellular construct that regulates the diffusion and transport of metabolites, ions, toxins, and inflammatory mediators into and out of the central nervous system (CNS). Its integrity is essential for proper brain physiology, and its breakdown has been shown to contribute to neurological dysfunction. The BBB in vertebrates exists primarily through the coordination between endothelial cells, pericytes, and astrocytes, while invertebrates, which lack a vascularized circulatory system, typically have a barrier composed of glial cells that separate the CNS from humoral fluids. Notably, the invertebrate barrier is molecularly and functionally analogous to the vertebrate BBB, and the fruit fly, Drosophila melanogaster, is increasingly recognized as a useful model system in which to investigate barrier function. The most widely used technique to assess barrier function in the fly is the dye-exclusion assay, which involves monitoring the infiltration of a fluorescent-coupled dextran into the brain. In this study, we explore analytical and technical considerations of this procedure that yield a more reliable assessment of barrier function, and we validate our findings using a traumatic injury model. Together, we have identified parameters that optimize the dye-exclusion assay and provide an alternative framework for future studies examining barrier function in Drosophila. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1827945
- PAR ID:
- 10483667
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- International Journal of Molecular Sciences
- Volume:
- 24
- Issue:
- 3
- ISSN:
- 1422-0067
- Page Range / eLocation ID:
- 1886
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Flies have an open circulatory system and their Blood Brain Barrier (BBB) surrounds the brain like a tight cap. The fly BBB consists of two layers of glial cells. The outer layer is formed by the Perineurial Glia (PG). The inner BBB layer consists of the Subperineurial Glia (SPG) that form the tight barrier that, like its mammalian counterpart, acts both as a diffusion and a xenobiotic transport barrier. Underneath the SPG lie the neuronal cell bodies. The Drosophila BBB shows the same barrier properties as the mammalian barrier and profiling of Drosophila BBB cells has shown a high degree of molecular conservation. We have previously shown that the Drosophila BBB plays a sex-specific role in regulating behavior. Conditional adult feminization of SPG cells in otherwise normal males leads to significantly reduced courtship. In agreement with this, in a microarray screen of isolated SPG cells, we identified a number of male-enriched transcripts. One of them encodes the dopamine-2 like receptor (D2R). We have found that conditional knockdown of D2R in adult male Drosophila SPG decreases courtship. Likewise, D2R mutant males have courtship defects. They can be rescued by expression of wildtype D2R in the SPG cells of mature adult males, demonstrating a physiological requirement for the receptor in these cells for courtship control4. The D2R receptor is highly conserved. It has been found that it can act via biased signaling (through G protein or b-arrestin) in mammals. We have previously found that signaling through Gao and arrestin in the BBB is required for proper male courtship. Although D2R is best known for signaling through cAMP, we have not found a requirement for cAMP/PKA signaling for courtship. To investigate the signaling pathways downstream of D2R that are responsible for courtship control we have mutagenized D2R proteins and examined their ability to rescue D2R mutants. Based on Peterson et al. we designed proteins capable of G-protein or arrestin biased signaling, respectively, and tested their ability to rescue the courtship defects of D2R mutants. Our data suggest that D2R signaling through b-arrestin is a major mediator of BBB courtship control.more » « less
- 
            The blood-brain barrier (BBB) is a crucial part of brain anatomy as it is a specialized, protective barrier that ensures proper nutrient transport to the brain, ultimately leading to regulating proper brain function. However, it presents a major challenge in delivering pharmaceuticals to treat central nervous system (CNS) diseases due to this selectivity. A variety of different vehicles have been designed to deliver drugs across this barrier to treat neurodegenerative diseases, greatly impacting the patient’s quality of life. The two main types of vehicles used to cross the BBB are polymers and liposomes, which both encapsulate pharmaceuticals to allow them to transcytose the cells of the BBB. For Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and glioblastoma brain cancer, there are a variety of different nanoparticle treatments in development that increase the bioavailability and targeting ability of existing drugs or new drug targets to decrease symptoms of these diseases. Through these systems, nanomedicine offers a new way to target specific tissues, especially for the CNS, and treat diseases without the systemic toxicity that often comes with medications used currently.more » « less
- 
            null (Ed.)Autism Spectrum Disorder (ASD) is a neurodevelopmental disease originating from combined genetic and environmental factors. Post-mortem human studies and some animal ASD models have shown brain neuroinflammation, oxidative stress, and changes in blood–brain barrier (BBB) integrity. However, the signaling pathways leading to these inflammatory findings and vascular alterations are currently unclear. The BBB plays a critical role in controlling brain homeostasis and immune response. Its dysfunction can result from developmental genetic abnormalities or neuroinflammatory processes. In this review, we explore the role of the Sonic Hedgehog/Wingless-related integration site (Shh/Wnt) pathways in neurodevelopment, neuroinflammation, and BBB development. The balance between Wnt-β-catenin and Shh pathways controls angiogenesis, barriergenesis, neurodevelopment, central nervous system (CNS) morphogenesis, and neuronal guidance. These interactions are critical to maintain BBB function in the mature CNS to prevent the influx of pathogens and inflammatory cells. Genetic mutations of key components of these pathways have been identified in ASD patients and animal models, which correlate with the severity of ASD symptoms. Disruption of the Shh/Wnt crosstalk may therefore compromise BBB development and function. In turn, impaired Shh signaling and glial activation may cause neuroinflammation that could disrupt the BBB. Elucidating how ASD-related mutations of Shh/Wnt signaling could cause BBB leaks and neuroinflammation will contribute to our understanding of the role of their interactions in ASD pathophysiology. These observations may provide novel targeted therapeutic strategies to prevent or alleviate ASD symptoms while preserving normal developmental processes.more » « less
- 
            Barichello T. (Ed.)The Drosophila blood-brain barrier (BBB) has been shown to be largely analogous in structure and function to the vertebrate BBB. Thanks to the genetic tools available for this organism, Drosophila is uniquely suited to study bbb physiology and function, with high relevance for mammalian function. In this chapter we discuss targeting strategies to specifically mark and manipulate BBB cells, how to test BBB integrity, and methods to isolate single-BBB cells.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    