skip to main content


This content will become publicly available on July 12, 2024

Title: Food-caching chickadees with specialized spatial cognition do not use scrounging as a stable strategy when learning a spatial task

Social animals may use alternative strategies when foraging, with producer–scrounger being one stable dichotomy of strategies. While ‘producers’ search and discover new food sources, ‘scroungers’ obtain food discovered by producers. Previous work suggests that differences in cognitive abilities may influence tendencies toward being either a producer or a scrounger, but scrounging behaviour in the context of specialized cognitive abilities is less understood. We investigated whether food-caching mountain chickadees, which rely on spatial cognition to retrieve food caches, engage in scrounging when learning a spatial task. We analysed data from seven seasons of spatial cognition testing, using arrays of radio frequency identification-enabled bird feeders, to identify and quantify potential scrounging behaviour. Chickadees rarely engaged in scrounging, scrounging was not repeatable within individuals and nearly all scrounging events occurred before the bird learned the ‘producer’ strategy. Scrounging was less frequent in harsher winters, but adults scrounged more than juveniles, and birds at higher elevations scrounged more than chickadees at lower elevations. There was no clear association between spatial cognitive abilities and scrounging frequency. Overall, our study suggests that food-caching species with specialized spatial cognition do not use scrounging as a stable strategy when learning a spatial task, instead relying on learning abilities.

 
more » « less
Award ID(s):
1856181 2119824
NSF-PAR ID:
10483766
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Royal Society
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
290
Issue:
2002
ISSN:
0962-8452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. While researchers have investigated mating decisions for decades, gaps remain in our understanding of how behaviour influences social mate choice. We compared spatial cognitive performance and food caching propensity within social pairs of mountain chickadees inhabiting differentially harsh winter climates to understand how these measures contribute to social mate choice. Chickadees rely on specialized spatial cognitive abilities to recover food stores and survive harsh winters, and females can discriminate among males with varying spatial cognition. Because spatial cognition and caching propensity are critical for survival and likely heritable, pairing with a mate with such enhanced traits may provide indirect benefits to offspring. Comparing the behaviour of social mates, we found that spatial cognitive performance approached a significant correlation within pairs at low, but not at high elevation. We found no correlation within pairs in spatial reversal cognitive performance at either elevation; however, females at high elevation tended to perform better than their social mates. Finally, we found that caching propensity correlated within pairs at low, while males cached significantly more food than their social mates at high elevations. These results suggest that cognition and caching propensity may influence social mating decisions, but only in certain environments and for some aspects of cognition.

     
    more » « less
  2. Senescence, the gradual reduction and loss of function as organisms age, is a widespread process that is especially pronounced in cognitive abilities. Senescence appears to have a genetic basis and can be affected by evolutionary processes. If cognitive senescence is shaped by natural selection, it may be linked with selection on cognitive abilities needed for survival and reproduction, such that species where fitness is directly related to cognitive abilities should evolve delayed cognitive senescence likely resulting in higher lifetime fitness. We used wild food-caching mountain chickadees, which rely on specialized spatial cognition to recover thousands of food caches annually, to test for cognitive senescence in spatial learning and memory and reversal spatial learning and memory abilities. We detected no signs of age-related senescence in spatial cognitive performance on either task in birds ranging from 1 to 6 years old; older birds actually performed better on spatial learning and memory tasks. Our results therefore suggest that cognitive senescence may be either delayed (potentially appearing after 6 years) or negligible in species with strong selection on cognitive abilities and that food-caching species may present a useful model to investigate mechanisms associated with cognitive senescence. 
    more » « less
  3. Social dominance has long been used as a model to investigate social stress. However, many studies using such comparisons have been performed in captive environments. These environments may produce unnaturally high antagonistic interactions, exaggerating the stress of social subordination and any associated adverse consequences. One such adverse effect concerns impaired cognitive ability, often thought to be associated with social subordination. Here, we tested whether social dominance rank is associated with differences in spatial learning and memory, and in reversal spatial learning (flexibility) abilities in wild food-caching mountain chickadees at different montane elevations. Higher dominance rank was associated with higher spatial cognitive flexibility in harsh environments at higher elevations, but not at lower, milder elevations. By contrast, there were no consistent differences in spatial learning and memory ability associated with dominance rank. Our results suggest that spatial learning and memory ability in specialized food-caching species is a stable trait resilient to social influences. Spatial cognitive flexibility, on the other hand, appears to be more sensitive to environmental influences, including social dominance. These findings contradict those from laboratory studies and suggest that it is critical to investigate the biological consequences of social dominance under natural conditions. 
    more » « less
  4. Laboratory studies show that increased physiological burden during development results in cognitive impairment. In the wild, animals experience a wide range of developmental conditions, and it is critical to understand how variation in such conditions affects cognitive abilities later in life, especially in species that strongly depend on such abilities for survival. We tested whether variation in developmental condition is associated with differences in spatial cognitive abilities in wild food-caching mountain chickadees. Using tail feathers grown during development in juvenile birds, we measured feather corticosterone (Cort f ) levels and growth rates and tested these birds during their first winter on two spatial learning tasks. In only 1 of the 3 years, higher feather Cort f was negatively associated with memory acquisition. No significant associations between feather Cort f and any other measurement of spatial cognition were detected in the other 2 years of the study or between feather growth rate and any measurement of cognition during the entire study. Our results suggest that in the wild, naturally existing variation in developmental condition has only a limited effect on spatial cognitive abilities, at least in a food-caching species. This suggests that there may be compensatory mechanisms to buffer specialized cognitive abilities against developmental perturbations. 
    more » « less
  5. Abstract

    Understanding the evolution of inter and intraspecific variation in cognitive abilities is one of the main goals in cognitive ecology. In scatter‐caching species, spatial memory is critical for the recovery of food caches and overwinter survival, but its effects on reproduction are less clear. Better spatial cognition may improve pre‐breeding condition allowing for earlier reproduction. Alternatively, when mated to males with better spatial memory, females may be able to invest more in reproduction which may allow increased offspring survival and hence higher fitness. Using wild food‐caching mountain chickadees, we found that when environmental conditions were favourable for breeding, females mated to males with better spatial cognition laid larger clutches and fledged larger broods than females mated to males with worse cognitive performance. Our results support the hypothesis that females may increase their reproductive investment to gain indirect, genetic benefits when mated to high‐quality males with better spatial cognitive abilities.

     
    more » « less