skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Large deviations for small noise diffusions over long time
We study two problems. First, we consider the large deviation behavior of empirical measures of certain diffusion processes as, simultaneously, the time horizon becomes large and noise becomes vanishingly small. The law of large numbers (LLN) of the empirical measure in this asymptotic regime is given by the unique equilibrium of the noiseless dynamics. Due to degeneracy of the noise in the limit, the methods of Donsker and Varadhan [Comm. Pure Appl. Math. 29 (1976), pp. 389–461] are not directly applicable and new ideas are needed. Second, we study a system of slow-fast diffusions where both the slow and the fast components have vanishing noise on their natural time scales. This time the LLN is governed by a degenerate averaging principle in which local equilibria of the noiseless system obtained from the fast dynamics describe the asymptotic evolution of the slow component. We establish a large deviation principle that describes probabilities of divergence from this behavior. On the one hand our methods require stronger assumptions than the nondegenerate settings, while on the other hand the rate functions take simple and explicit forms that have striking differences from their nondegenerate counterparts.  more » « less
Award ID(s):
2152577 2134107
PAR ID:
10483864
Author(s) / Creator(s):
;
Publisher / Repository:
American Mathematical Society (AMS)
Date Published:
Journal Name:
Transactions of the American Mathematical Society, Series B
Volume:
11
Issue:
1
ISSN:
2330-0000
Format(s):
Medium: X Size: p. 1-63
Size(s):
p. 1-63
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The aim of this paper is to develop tractable large deviation approximations for the empirical measure of a small noise diffusion. The starting point is the Freidlin–Wentzell theory, which shows how to approximate via a large deviation principle the invariant distribution of such a diffusion. The rate function of the invariant measure is formulated in terms of quasipotentials, quantities that measure the difficulty of a transition from the neighborhood of one metastable set to another. The theory provides an intuitive and useful approximation for the invariant measure, and along the way many useful related results (e.g., transition rates between metastable states) are also developed. With the specific goal of design of Monte Carlo schemes in mind, we prove large deviation limits for integrals with respect to the empirical measure, where the process is considered over a time interval whose length grows as the noise decreases to zero. In particular, we show how the first and second moments of these integrals can be expressed in terms of quasipotentials. When the dynamics of the process depend on parameters, these approximations can be used for algorithm design, and applications of this sort will appear elsewhere. The use of a small noise limit is well motivated, since in this limit good sampling of the state space becomes most challenging. The proof exploits a regenerative structure, and a number of new techniques are needed to turn large deviation estimates over a regenerative cycle into estimates for the empirical measure and its moments. 
    more » « less
  2. Abstract We consider a collection of Markov chains that model the evolution of multitype biological populations. The state space of the chains is the positive orthant, and the boundary of the orthant is the absorbing state for the Markov chain and represents the extinction states of different population types. We are interested in the long-term behavior of the Markov chain away from extinction, under a small noise scaling. Under this scaling, the trajectory of the Markov process over any compact interval converges in distribution to the solution of an ordinary differential equation (ODE) evolving in the positive orthant. We study the asymptotic behavior of the quasi-stationary distributions (QSD) in this scaling regime. Our main result shows that, under conditions, the limit points of the QSD are supported on the union of interior attractors of the flow determined by the ODE. We also give lower bounds on expected extinction times which scale exponentially with the system size. Results of this type when the deterministic dynamical system obtained under the scaling limit is given by a discrete-time evolution equation and the dynamics are essentially in a compact space (namely, the one-step map is a bounded function) have been studied by Faure and Schreiber (2014). Our results extend these to a setting of an unbounded state space and continuous-time dynamics. The proofs rely on uniform large deviation results for small noise stochastic dynamical systems and methods from the theory of continuous-time dynamical systems. In general, QSD for Markov chains with absorbing states and unbounded state spaces may not exist. We study one basic family of binomial-Poisson models in the positive orthant where one can use Lyapunov function methods to establish existence of QSD and also to argue the tightness of the QSD of the scaled sequence of Markov chains. The results from the first part are then used to characterize the support of limit points of this sequence of QSD. 
    more » « less
  3. We study the asymptotic behavior, uniform-in-time, of a nonlinear dynamical system under the combined effects of fast periodic sampling with period [Formula: see text] and small white noise of size [Formula: see text]. The dynamics depend on both the current and recent measurements of the state, and as such it is not Markovian. Our main results can be interpreted as Law of Large Numbers (LLN) and Central Limit Theorem (CLT) type results. LLN type result shows that the resulting stochastic process is close to an ordinary differential equation (ODE) uniformly in time as [Formula: see text] Further, in regards to CLT, we provide quantitative and uniform-in-time control of the fluctuations process. The interaction of the small parameters provides an additional drift term in the limiting fluctuations, which captures both the sampling and noise effects. As a consequence, we obtain a first-order perturbation expansion of the stochastic process along with time-independent estimates on the remainder. The zeroth- and first-order terms in the expansion are given by an ODE and SDE, respectively. Simulation studies that illustrate and supplement the theoretical results are also provided. 
    more » « less
  4. null (Ed.)
    Abstract The study of high-dimensional distributions is of interest in probability theory, statistics, and asymptotic convex geometry, where the object of interest is the uniform distribution on a convex set in high dimensions. The ℓ p -spaces and norms are of particular interest in this setting. In this paper we establish a limit theorem for distributions on ℓ p -spheres, conditioned on a rare event, in a high-dimensional geometric setting. As part of our proof, we establish a certain large deviation principle that is also relevant to the study of the tail behavior of random projections of ℓ p -balls in a high-dimensional Euclidean space. 
    more » « less
  5. We present a simple model-free control algorithm that is able to robustly learn and stabilize an unknown discrete time linear system with full control and state feedback subject to arbitrary bounded disturbance and noise sequences. The controller does not require any prior knowledge of the system dynamics, disturbances or noise, yet can guarantee robust stability, uniform asymptotic bounds and uniform worst-case bounds on the state-deviation. Rather than the algorithm itself, we would like to highlight the new approach taken towards robust stability analysis which served as a key enabler in providing the presented stability and performance guarantees. We will conclude with simulation results that show that despite the generality and simplicity, the controller demonstrates good closed-loop performance. 
    more » « less