skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Regulation of AMPA receptor trafficking by secreted protein factors
AMPA receptors (AMPARs) mediate the majority of fast excitatory transmission in the brain. Regulation of AMPAR levels at synapses controls synaptic strength and underlies information storage and processing. Many proteins interact with the intracellular domain of AMPARs to regulate their trafficking and synaptic clustering. However, a growing number of extracellular factors important for glutamatergic synapse development, maturation and function have emerged that can also regulate synaptic AMPAR levels. This mini-review highlights extracellular protein factors that regulate AMPAR trafficking to control synapse development and plasticity. Some of these factors regulate AMPAR clustering and mobility by interacting with the extracellular N-terminal domain of AMPARs whereas others regulate AMPAR trafficking indirectly via their respective signaling receptors. While several of these factors are secreted from neurons, others are released from non-neuronal cells such as glia and muscle. Although it is apparent that secreted factors can act locally on neurons near their sites of release to coordinate individual synapses, it is less clear if they can diffuse over longer ranges to coordinate related synapses within a circuit or region of the brain. Given that there are hundreds of factors that can be secreted from neuronal and non-neuronal cells, it will not be surprising if more extracellular factors that modulate AMPARs and glutamatergic synapses are discovered. Many open questions remain including where and when the factors are expressed, what regulates their secretion from different cell types, what controls their diffusion, stability, and range of action, and how their cognate receptors influence intracellular signaling to control AMPAR trafficking.  more » « less
Award ID(s):
1941073
PAR ID:
10483988
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Cellular Neuroscience
Volume:
17
ISSN:
1662-5102
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hart, Anne C. (Ed.)
    Several intracellular trafficking pathways contribute to the regulation of AMPA receptor (AMPAR) levels at synapses and the control of synaptic strength. While much has been learned about these intracellular trafficking pathways, a major challenge is to understand how extracellular factors, such as growth factors, neuropeptides and hormones, impinge on specific AMPAR trafficking pathways to alter synaptic function and behavior. Here, we identify the secreted ligand PVF-1 and its cognate VEGF receptor homologs, VER-1 and VER-4, as regulators of glutamate signaling in C . elegans . Loss of function mutations in ver-1 , ver-4 , or pvf-1 , result in decreased cell surface levels of the AMPAR GLR-1 and defects in glutamatergic behavior. Rescue experiments indicate that PVF-1 is expressed and released from muscle, whereas the VERs function in GLR-1-expressing neurons to regulate surface levels of GLR-1 and glutamatergic behavior. Additionally, ver-4 is unable to rescue glutamatergic behavior in the absence of pvf-1 , suggesting that VER function requires endogenous PVF-1. Inducible expression of a pvf-1 rescuing transgene suggests that PVF-1 can function in the mature nervous system to regulate GLR-1 signaling. Genetic double mutant analysis suggests that the VERs act together with the VPS-35/retromer recycling complex to promote cell surface levels of GLR-1. Our data support a genetic model whereby PVF-1/VER signaling acts with retromer to promote recycling and cell surface levels of GLR-1 to control behavior. 
    more » « less
  2. Wnt signaling plays a key role in the mature CNS by regulating trafficking of NMDA-type glutamate receptors and intrinsic properties of neurons. The Wnt receptor ROR2 has been identified as a necessary component of the neuronal Wnt5a/Ca2+ signaling pathway that regulates synaptic and neuronal function. Since ROR2 is considered a pseudokinase, its mechanism for downstream signaling upon ligand binding has been controversial. It has been suggested that its role is to function as a coreceptor of a G-protein–coupled Wnt receptor of the Frizzled family. We show that chemically induced homodimerization of ROR2 is sufficient to recapitulate key signaling events downstream of receptor activation in neurons, including PKC and JNK kinases activation, elevation of somatic and dendritic Ca2+ levels, and increased trafficking of NMDARs to synapses. In addition, we show that homodimerization of ROR2 induces phosphorylation of the receptor on Tyr residues. Point mutations in the conserved but presumed nonfunctional ATP-binding site of the receptor prevent its phosphorylation, as well as downstream signaling. This suggests an active kinase domain. Our results indicate that ROR2 can signal independently of Frizzled receptors to regulate the trafficking of a key synaptic component. Additionally, they suggest that homodimerization can overcome structural conformations that render the tyrosine kinase inactive. A better understanding of ROR2 signaling is crucial for comprehending the regulation of synaptic and neuronal function in normal brain processes in mature animals. 
    more » « less
  3. It is well established that, during neural circuit development, glutamatergic synapses become strengthened via NMDA receptor (NMDAR)-dependent upregulation of AMPA receptor (AMPAR)-mediated currents. In addition, however, it is known that the neuromodulator serotonin is present throughout most regions of the vertebrate brain while synapses are forming and being shaped by activity-dependent processes. This suggests that serotonin may modulate or contribute to these processes. Here, we investigate the role of serotonin in the developing retinotectal projection of theXenopustadpole. We altered endogenous serotonin transmission in stage 48/49 (∼10–21 days postfertilization)Xenopustadpoles and then carried out a set of whole-cell electrophysiological recordings from tectal neurons to assess retinotectal synaptic transmission. Because tadpole sex is indeterminate at these early stages of development, experimental groups were composed of randomly chosen tadpoles. We found that pharmacologically enhancing and reducing serotonin transmission for 24 h up- and downregulates, respectively, AMPAR-mediated currents at individual retinotectal synapses. Inhibiting 5-HT2receptors also significantly weakened AMPAR-mediated currents and abolished the synapse strengthening effect seen with enhanced serotonin transmission, indicating a 5-HT2receptor–dependent effect. We also determine that the serotonin-dependent upregulation of synaptic AMPAR currents was mediated via an NMDAR-independent, PI3K-dependent mechanism. Altogether, these findings indicate that serotonin regulates AMPAR currents at developing synapses independent of NMDA transmission, which may explain its role as an enabler of activity-dependent plasticity. 
    more » « less
  4. Fast excitatory neurotransmission is mediated by the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) subtype of ionotropic glutamate receptor (AMPAR). AMPARs initiate depolarization of the postsynaptic neuron by allowing cations to enter through their ion channel pores in response to binding of the neurotransmitter glutamate. AMPAR function is dramatically affected by auxiliary subunits, which are regulatory proteins that form various complexes with AMPARs throughout the brain. The most well-studied auxiliary subunits are the transmembrane AMPAR regulatory proteins (TARPs), which alter the assembly, trafficking, localization, kinetics, and pharmacology of AMPARs. Recent structural and functional studies of TARPs and the TARP-fold germ cell-specific gene 1-like (GSG1L) subunit have provided important glimpses into how auxiliary subunits regulate the function of synaptic complexes. In this review, we put these recent structures in the context of new functional findings in order to gain insight into the determinants of AMPAR regulation by TARPs. We thus reveal why TARPs display a broad range of effects despite their conserved modular architecture. 
    more » « less
  5. NMDA-type glutamate receptors are heterotetrameric complexes composed of two GluN1 and two GluN2 subunits. The precise composition of the GluN2 subunits determines the channel's biophysical properties and influences its interaction with postsynaptic scaffolding proteins and signaling molecules involved in synaptic physiology and plasticity. The precise regulation of NMDAR subunit composition at synapses is crucial for proper synaptogenesis, neuronal circuit development, and synaptic plasticity, a cellular model of memory formation. In the forebrain during early development, NMDARs contain solely the GluN2B subunit, which is necessary for proper synaptogenesis and synaptic plasticity. In rodents, GluN2A subunit expression begins in the second postnatal week, replacing GluN2B-containing NMDARs at synapses in an activity- or sensory experience-dependent process. This switch in NMDAR subunit composition at synapses alters channel properties and reduces synaptic plasticity. The molecular mechanism regulating the switch remains unclear. We have investigated the role of activity-dependent internalization of GluN2B-containing receptors in shaping synaptic NMDAR subunit composition. Using molecular, pharmacological, and electrophysiological approaches in cultured organotypic hippocampal slices from rats of both sexes, we show that the process of incorporating GluN2A-containing NMDAR receptors requires activity-dependent internalization of GluN2B-containing NMDARs. Interestingly, blockade of GluN2A synaptic incorporation was associated with impaired potentiation of AMPA-mediated synaptic transmission, suggesting a potential coupling between the trafficking of AMPARs into synapses and that of GluN2A-containing NMDARs. These insights contribute to our understanding of the molecular mechanisms underlying synaptic trafficking of glutamate receptors and synaptic plasticity. They may also have implications for therapeutic strategies targeting NMDAR function in neurological disorders. 
    more » « less