While there are several bottlenecks in hybrid organic–inorganic perovskite (HOIP) solar cell production steps, including composition screening, fabrication, material stability, and device performance, machine learning approaches have begun to tackle each of these issues in recent years. Different algorithms have successfully been adopted to solve the unique problems at each step of HOIP development. Specifically, high-throughput experimentation produces vast amount of training data required to effectively implement machine learning methods. Here, we present an overview of machine learning models, including linear regression, neural networks, deep learning, and statistical forecasting. Experimental examples from the literature, where machine learning is applied to HOIP composition screening, thin film fabrication, thin film characterization, and full device testing, are discussed. These paradigms give insights into the future of HOIP solar cell research. As databases expand and computational power improves, increasingly accurate predictions of the HOIP behavior are becoming possible.
more » « less- Award ID(s):
- 2023974
- PAR ID:
- 10484006
- Publisher / Repository:
- APL Energy
- Date Published:
- Journal Name:
- APL Energy
- Volume:
- 1
- Issue:
- 2
- ISSN:
- 2770-9000
- Page Range / eLocation ID:
- 020901-1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Dye sensitized solar cells are a type of thin film solar cell used to convert sunlight into electrical energy. These devices use a different mechanism than conventional solar cells and can be made from materials which are biocompatible and biodegradable. The simplicity of design and small environmental impact of these devices make them a likely candidate for replacing conventional PV devices. Since these solar cells are thin film cells, they can be made to be transparent and can be printed on flexible substrate, allowing their incorporation into many household objects such as windows, backpacks, walls, and other objects which would otherwise not be used for energy generation. A wide variety of fabrication techniques and device designs exist for DSSCs, each having its benefits and deficiencies; it is the purpose of this paper to evaluate some of these design variations, including different semiconductor and dye types and scaffolds, as well as semiconductor surface treatment using microwave plasma.more » « less
-
Dye sensitized solar cells are a type of thin film solar cell used to convert sunlight into electrical energy. These devices use a different mechanism than conventional solar cells and can be made from materials which are biocompatible and biodegradable. The simplicity of design and small environmental impact of these devices make them a likely candidate for replacing conventional PV devices. Since these solar cells are thin film cells, they can be made to be transparent and can be printed on flexible substrate, allowing their incorporation into many household objects such as windows, backpacks, walls, and other objects which would otherwise not be used for energy generation. A wide variety of fabrication techniques and device designs exist for DSSCs, each having its benefits and deficiencies; it is the purpose of this paper to evaluate some of these design variations, including different semiconductor and dye types and scaffolds, as well as semiconductor surface treatment.more » « less
-
Abstract The ever increasing library of materials systems developed for organic solar‐cells, including highly promising non‐fullerene acceptors and new, high‐efficiency donor polymers, demands the development of methodologies that i) allow fast screening of a large number of donor:acceptor combinations prior to device fabrication and ii) permit rapid elucidation of how processing affects the final morphology/microstructure of the device active layers. Efficient, fast screening will ensure that important materials combinations are not missed; it will accelerate the technological development of this alternative solar‐cell platform toward larger‐area production; and it will permit understanding of the structural changes that may occur in the active layer over time. Using the relatively high‐efficiency poly[(5,6‐difluoro‐2,1,3‐benzothiadiazol‐4,7‐diyl)‐alt‐(3,3′′′‐di(2‐octyldodecyl)‐2,2′;5′,2′′;5′′,2′′′‐quaterthiophen‐5,5′′′‐diyl)] (PCE11):phenyl‐C61‐butyric acid‐methyl‐ester acceptor (PCBM) blend systems, it is demonstrated that by means of straight‐forward thermal analysis, vapor‐phase‐infiltration imaging, and transient‐absorption spectroscopy, various blend compositions and processing methodologies can be rapidly screened, information on promising combinations can be obtained, reliability issues with respect to reproducibility of thin‐film formation can be identified, and insights into how processing aids, such as nucleating agents, affect structure formation, can be gained.
-
Abstract As the need for green energy increases, particularly solar energy, perovskite‐based devices have become a promising alternative to more complex, costly semiconductor‐based photovoltaic devices. The major advantage of perovskite‐based devices is their relatively facile fabrication as a thin film at fairly low temperatures and their tunable optoelectronic properties. The chemical composition of perovskite structures, solvent and heat treatments used in processing, additives, and deposition methods produce films with different morphologies. Their ability to be used with other organic and inorganic subcells makes them a useful component for an efficient, cost‐effective approach to harvest solar energy. This review presents some of the latest approaches and considerations for the fabrication, architecture, and performance of perovskite‐based solar cells. Various perovskite device architectures are discussed, as well as the effects of environmental conditions on performance and degradation.
-
Abstract The morphology, chemical composition, and electronic uniformity of thin‐film solution‐processed optoelectronics are believed to greatly affect device performance. Although scanning probe microscopies can address variations on the micrometer scale, the field of view is still limited to well under the typical device area, as well as the size of extrinsic defects introduced during fabrication. Herein, a micrometer‐resolution 2D characterization method with millimeter‐scale field of view is demonstrated, which simultaneously collects photoluminescence spectra, photocurrent transients, and photovoltage transients. This high‐resolution morphology mapping is used to quantify the distribution and strength of the local optoelectronic property variations in colloidal quantum dot solar cells due to film defects, physical damage, and contaminants across nearly the entire test device area, and the extent to which these variations account for overall performance losses. It is found that macroscopic defects have effects that are confined to their localized areas, rarely prove fatal for device performance, and are largely not responsible for device shunting. Moreover, quantitative analysis based on statistical partitioning methods of such data is used to show how defect identification can be automated while identifying variations in underlying properties such as mobilities and recombination strengths and the mechanisms by which they govern device behavior.