skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Strategies to reduce the thermoelastic loss of multimaterial coated finite substrates
Abstract

Thermoelastic loss is an important energy dissipation mechanisms in resonant systems. A careful analysis of the thermoelastic loss is critical to the design of low-noise devices for high-precision applications, such as the mirrors used for gravitational-wave (GW) detectors. In this paper, we present analytical solutions to the thermoelastic loss due to thermoelasticity between different materials that are in contact. We find expressions for the thermoelastic loss of multimaterial coatings of finite substrates, and analyze its dependencies on material properties, mirror design and operating experimental conditions. Our results show that lower operating mirror temperature, thinner layers and higher number of interfaces in the coating, and the choice of the first layer of the coating that minimizes the thermal expansion mismatch with the substrate are strategies that reduce the thermoelastic loss and, therefore, diminish the thermal noise that limits the resolution in sensing applications. The results presented in this paper are relevant for the development of low-noise GW detectors and for other experiments sensitive to energy dissipation mechanisms when different materials are in contact.

 
more » « less
Award ID(s):
2011719
NSF-PAR ID:
10484008
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Classical and Quantum Gravity
Volume:
40
Issue:
14
ISSN:
0264-9381
Page Range / eLocation ID:
144001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Brownian coating thermal noise in detector test masses is limiting the sensitivity of current gravitational-wave detectors on Earth. Therefore, accurate numerical models can inform the ongoing effort to minimize Brownian coating thermal noise in current and future gravitational-wave detectors. Such numerical models typically require significant computational resources and time, and often involve closed-source commercial codes. In contrast, open-source codes give complete visibility and control of the simulated physics, enable direct assessment of the numerical accuracy, and support the reproducibility of results. In this article, we use the open-sourceSpECTREnumerical relativity code and adopt a novel discontinuous Galerkin numerical method to model Brownian coating thermal noise. We demonstrate thatSpECTREachieves significantly higher accuracy than a previous approach at a fraction of the computational cost. Furthermore, we numerically model Brownian coating thermal noise in multiple sub-wavelength crystalline coating layers for the first time. Our new numerical method has the potential to enable fast exploration of realistic mirror configurations, and hence to guide the search for optimal mirror geometries, beam shapes and coating materials for gravitational-wave detectors.

     
    more » « less
  2. Crystalline materials are promising candidates as substrates or high-reflective coatings of mirrors to reduce thermal noises in future laser interferometric gravitational wave detectors. However, birefringence of such materials could degrade the sensitivity of gravitational wave detectors, not only because it can introduce optical losses, but also because its fluctuations create extra phase noise in the arm cavity reflected beam. In this paper, we analytically estimate the effects of birefringence and its fluctuations in the mirror substrate and coating for gravitational wave detectors. 
    more » « less
  3. Mechanical loss of dielectric mirror coatings sets fundamental limits for both gravitational wave detectors and cavity-stabilized optical local oscillators for atomic clocks. Two approaches are used to determine the mechanical loss: ringdown measurements of the coating quality factor and direct measurement of the coating thermal noise. Here we report a systematic study of the mirror thermal noise at 4, 16, 124, and 300 K by operating reference cavities at these temperatures. The directly measured thermal noise is used to extract the mechanical loss forSiO2/Ta2O5coatings, which are compared with previously reported values.

     
    more » « less
  4. AIP (Ed.)
    In this Perspective, we summarize the status of technological development for large-area and low-noise substrate-transferred GaAs/AlGaAs (AlGaAs) crystalline coatings for interferometric gravitational-wave (GW) detectors. These topics were originally presented as part of an AlGaAs Workshop held at American University, Washington, DC, from 15 August to 17 August 2022, bringing together members of the GW community from the laser interferometer gravitational-wave observatory (LIGO), Virgo, and KAGRA collaborations, along with scientists from the precision optical metrology community, and industry partners with extensive expertise in the manufacturing of said coatings. AlGaAs-based crystalline coatings present the possibility of GW observatories having significantly greater range than current systems employing ion-beam sputtered mirrors. Given the low thermal noise of AlGaAs at room temperature, GW detectors could realize these significant sensitivity gains while potentially avoiding cryogenic operation. However, the development of large-area AlGaAs coatings presents unique challenges. Herein, we describe recent research and development efforts relevant to crystalline coatings, covering characterization efforts on novel noise processes as well as optical metrology on large-area (∼10 cm diameter) mirrors. We further explore options to expand the maximum coating diameter to 20 cm and beyond, forging a path to produce low-noise mirrors amenable to future GW detector upgrades, while noting the unique requirements and prospective experimental testbeds for these semiconductor-based coatings. 
    more » « less
  5. In this Perspective, we summarize the status of technological development for large-area and low-noise substrate-transferred GaAs/AlGaAs (AlGaAs) crystalline coatings for interferometric gravitational-wave (GW) detectors. These topics were originally presented as part of an AlGaAs Workshop held at American University, Washington, DC, from 15 August to 17 August 2022, bringing together members of the GW community from the laser interferometer gravitational-wave observatory (LIGO), Virgo, and KAGRA collaborations, along with scientists from the precision optical metrology community, and industry partners with extensive expertise in the manufacturing of said coatings. AlGaAs-based crystalline coatings present the possibility of GW observatories having significantly greater range than current systems employing ion-beam sputtered mirrors. Given the low thermal noise of AlGaAs at room temperature, GW detectors could realize these significant sensitivity gains while potentially avoiding cryogenic operation. However, the development of large-area AlGaAs coatings presents unique challenges. Herein, we describe recent research and development efforts relevant to crystalline coatings, covering characterization efforts on novel noise processes as well as optical metrology on large-area (∼10 cm diameter) mirrors. We further explore options to expand the maximum coating diameter to 20 cm and beyond, forging a path to produce low-noise mirrors amenable to future GW detector upgrades, while noting the unique requirements and prospective experimental testbeds for these semiconductor-based coatings. 
    more » « less