skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Orbital-flop transition of superfluid 3He in anisotropic silica aerogel
Abstract Superfluid3He is a paradigm for odd-parity Cooper pairing, ranging from neutron stars to uranium-based superconducting compounds. Recently it has been shown that3He, imbibed in anisotropic silica aerogel with either positive or negative strain, preferentially selects either the chiral A-phase or the time-reversal-symmetric B-phase. This control over basic order parameter symmetry provides a useful model for understanding imperfect unconventional superconductors. For both phases, the orbital quantization axis is fixed by the direction of strain. Unexpectedly, at a specific temperatureTx, the orbital axis flops by 90, but in reverse order for A and B-phases. Aided by diffusion limited cluster aggregation simulations of anisotropic aerogel and small angle X-ray measurements, we are able to classify these aerogels as either “planar and “nematic concluding that the orbital-flop is caused by competition between short and long range structures in these aerogels.  more » « less
Award ID(s):
2210112
PAR ID:
10484060
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Many studies have recently documented the orbital response of eccentric binaries accreting from thin circumbinary disks, characterizing the change in the binary semimajor axis and eccentricity. We extend these calculations to include the precession of the binary’s longitude of periapse induced by the circumbinary disk, and we characterize this precession continuously with binary eccentricityebfor equal mass components. This disk-induced apsidal precession is prograde with a weak dependence on the binary eccentricity wheneb≲ 0.4 and decreases approximately linearly foreb≳ 0.4; yet at allebbinary precession is faster than the rates of change to the semimajor axis and eccentricity by an order of magnitude. We estimate that such precession effects are likely most important for subparsec separated binaries with masses ≲107M, like LISA precursors. We find that accreting, equal-mass LISA binaries withM< 106M(and the most massiveM∼ 107Mbinaries out toz∼ 3) may acquire a detectable phase offset due to the disk-induced precession. Moreover, disk-induced precession can compete with general relativistic precession in a vacuum, making it important for observer-dependent electromagnetic searches for accreting massive binaries—like Doppler boost and binary self-lensing models—after potentially only a few orbital periods. 
    more » « less
  2. Abstract There is tremendous interest in employing collective excitations of the lattice, spin, charge, and orbitals to tune strongly correlated electronic phenomena. We report such an effect in a ruthenate, Ca3Ru2O7, where two phonons with strong electron-phonon coupling modulate the electronic pseudogap as well as mediate charge and spin density wave fluctuations. Combining temperature-dependent Raman spectroscopy with density functional theory reveals two phonons,B2PandB2M, that are strongly coupled to electrons and whose scattering intensities respectively dominate in the pseudogap versus the metallic phases. TheB2Psqueezes the octahedra along the out of planec-axis, while theB2Melongates it, thus modulating the Ru 4d orbital splitting and the bandwidth of the in-plane electron hopping; Thus,B2Popens the pseudogap, whileB2Mcloses it. Moreover, theB2phonons mediate incoherent charge and spin density wave fluctuations, as evidenced by changes in the background electronic Raman scattering that exhibit unique symmetry signatures. The polar order breaks inversion symmetry, enabling infrared activity of these phonons, paving the way for coherent light-driven control of electronic transport. 
    more » « less
  3. Abstract In this work, we provide clear evidence of magnetic anisotropy in the local orbital moment of a molecular thin film based on the SCO complex [Fe(H2B(pz)2)2(bipy)] (pz = pyrazol−1−yl, bipy = 2,2′−bipyridine). Field dependent x-ray magnetic circular dichroism measurements indicate that the magnetic easy axis for the orbital moment is along the surface normal direction. Along with the presence of a critical field, our observation points to the existence of an anisotropic energy barrier in the high-spin state. The estimated nonzero coupling constant of ∼2.47 × 10−5eV molecule−1indicates that the observed magnetocrystalline anisotropy is mostly due to spin–orbit coupling. The spin- and orbital-component anisotropies are determined to be 30.9 and 5.04 meV molecule−1, respectively. Furthermore, the estimatedgfactor in the range of 2.2–2.45 is consistent with the expected values. This work has paved the way for an understanding of the spin-state-switching mechanism in the presence of magnetic perturbations. 
    more » « less
  4. Abstract We present photometric and spectroscopic observations of SN 2023fyq, a Type Ibn supernova (SN) in the nearby galaxy NGC 4388 (D≃ 18 Mpc). In addition, we trace the 3 yr long precursor emission at the position of SN 2023fyq using data from DLT40, ATLAS, Zwicky Transient Facility, ASAS-SN, Swift, and amateur astronomer Koichi Itagaki. The double-peaked postexplosion light curve reaches a luminosity of ∼1043erg s−1. The strong intermediate-width He lines observed in the nebular spectrum imply the interaction is still active at late phases. We found that the precursor activity in SN 2023fyq is best explained by the mass transfer in a binary system involving a low-mass He star and a compact companion. An equatorial disk is likely formed in this process (∼0.6M), and the interaction of SN ejecta with this disk powers the second peak of the SN. The early SN light curve reveals the presence of dense extended material (∼0.3M) at ∼3000Rejected weeks before the SN explosion, likely due to final-stage core silicon burning or runaway mass transfer resulting from binary orbital shrinking, leading to rapid-rising precursor emission within ∼30 days prior to explosion. The final explosion could be triggered either by the core collapse of the He star or by the merger of the He star with a compact object. SN 2023fyq, along with SN 2018gjx and SN 2015G, forms a unique class of Type Ibn SNe, which originate in binary systems and are likely to exhibit detectable long-lasting pre-explosion outbursts with magnitudes ranging from −10 to −13. 
    more » « less
  5. Abstract The hafnate perovskites PbHfO3(antiferroelectric) and SrHfO3(“potential” ferroelectric) are studied as epitaxial thin films on SrTiO3(001) substrates with the added opportunity of observing a morphotropic phase boundary (MPB) in the Pb1−xSrxHfO3system. The resulting (240)‐oriented PbHfO3(Pba2) films exhibited antiferroelectric switching with a saturation polarization ≈53 µC cm−2at 1.6 MV cm−1, weak‐field dielectric constant ≈186 at 298 K, and an antiferroelectric‐to‐paraelectric phase transition at ≈518 K. (002)‐oriented SrHfO3films exhibited neither ferroelectric behavior nor evidence of a polarP4mmphase . Instead, the SrHfO3films exhibited a weak‐field dielectric constant ≈25 at 298 K and no signs of a structural transition to a polar phase as a function of temperature (77–623 K) and electric field (–3 to 3 MV cm−1). While the lack of ferroelectric order in SrHfO3removes the potential for MPB, structural and property evolution of the Pb1−xSrxHfO3(0 ≤x < 1) system is explored. Strontium alloying increased the electric‐breakdown strength (EB) and decreased hysteresis loss, thus enhancing the capacitive energy storage density (Ur) and efficiency (η). The composition, Pb0.5Sr0.5HfO3produced the best combination ofEB = 5.12 ± 0.5 MV cm−1,Ur = 77 ± 5 J cm−3, and η = 97 ± 2%, well out‐performing PbHfO3and other antiferroelectric oxides. 
    more » « less