skip to main content


Title: Evidence for non-merger co-evolution of galaxies and their supermassive black holes
ABSTRACT

Recent observational and theoretical studies have suggested that supermassive black holes (SMBHs) grow mostly through non-merger (‘secular’) processes. Since galaxy mergers lead to dynamical bulge growth, the only way to observationally isolate non-merger growth is to study galaxies with low bulge-to-total mass ratio (e.g. $B/T\lt 10~{{\ \rm per\ cent}}$). However, bulge growth can also occur due to secular processes, such as disc instabilities, making disc-dominated selections a somewhat incomplete way to select merger-free systems. Here we use the Horizon-AGN simulation to select simulated galaxies which have not undergone a merger since z = 2, regardless of bulge mass, and investigate their location on typical black hole-galaxy scaling relations in comparison to galaxies with merger dominated histories. While the existence of these correlations has long been interpreted as co-evolution of galaxies and their SMBHs driven by galaxy mergers, we show here that they persist even in the absence of mergers. We find that the correlations between SMBH mass and both total mass and stellar velocity dispersion are independent of B/T ratio for both merger-free and merger-dominated galaxies. In addition, the bulge mass and SMBH mass correlation is still apparent for merger-free galaxies, the intercept for which is dependent on B/T. Galaxy mergers reduce the scatter around the scaling relations, with merger-free systems showing broader scatter. We show that for merger-free galaxies, the co-evolution is dominated by radio-mode feedback, and suggest that the long periods of time between galaxy mergers make an important contribution to the co-evolution between galaxies and SMBHs in all galaxies.

 
more » « less
PAR ID:
10484064
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
527
Issue:
4
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 10855-10866
Size(s):
p. 10855-10866
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Here, we use the Horizon–active galactic nucleus (AGN) simulation to test whether the spins of supermassive black hole (SMBH) in merger-free galaxies are higher. We select samples using an observationally motivated bulge-to-total mass ratio of <0.1, along with two simulation-motivated thresholds selecting galaxies which have not undergone a galaxy merger since z = 2, and those SMBHs with $\lt 10~{{\ \rm per\ cent}}$ of their mass due to SMBH mergers. We find higher spins (>5σ) in all three sample compared to the rest of the population. In addition, we find that SMBHs with their growth dominated by BH mergers following galaxy mergers are less likely to be aligned with their galaxy spin than those that have grown through accretion in the absence of galaxy mergers (3.4σ). We discuss the implications this has for the impact of active galactic nucleus (AGN) feedback, finding that merger-free SMBHs spend on average 91 per cent of their lifetimes since z = 2 in a radio mode of feedback (88 per cent for merger-dominated galaxies). Given that previous observational and theoretical works have concluded that merger-free processes dominate SMBH-galaxy co-evolution, our results suggest that this co-evolution could be regulated by radio mode AGN feedback.

     
    more » « less
  2. ABSTRACT

    The concurrent growth of supermassive black holes (SMBHs) and their host galaxies remains to be fully explored, especially at high redshift. While often understood as a consequence of self-regulation via AGN feedback, it can also be explained by alternative SMBH accretion models. Here, we expand on previous work by studying the growth of SMBHs with the help of a large suite of cosmological zoom-in simulations (MassiveFIRE) that are part of the Feedback in Realistic Environments (FIRE) project. The growth of SMBHs is modelled in post-processing with different black hole accretion models, placements, and merger treatments, and validated by comparing to on-the-fly calculations. Scaling relations predicted by the gravitational torque-driven accretion (GTDA) model agree with observations at low redshift without the need for AGN feedback, in contrast to models in which the accretion rate depends strongly on SMBH mass. At high redshift, we find deviations from the local scaling relations in line with previous theoretical results. In particular, SMBHs are undermassive, presumably due to stellar feedback, but start to grow efficiently once their host galaxies reach M* ∼ 1010M⊙. We analyse and explain these findings in the context of a simple analytic model. Finally, we show that the predicted scaling relations depend sensitively on the SMBH location and the efficiency of SMBH merging, particularly in low-mass systems. These findings highlight the relevance of understanding the evolution of SMBH-galaxy scaling relations to predict the rate of gravitational wave signals from SMBH mergers across cosmic history.

     
    more » « less
  3. ABSTRACT

    Despite the evidence that supermassive black holes (SMBHs) co-evolve with their host galaxy, and that most of the growth of these SMBHs occurs via merger-free processes, the underlying mechanisms which drive this secular co-evolution are poorly understood. We investigate the role that both strong and weak large-scale galactic bars play in mediating this relationship. Using 48 871 disc galaxies in a volume-limited sample from Galaxy Zoo DESI, we analyse the active galactic nucleus (AGN) fraction in strongly barred, weakly barred, and unbarred galaxies up to $z = 0.1$ over a range of stellar masses and colours. After controlling for stellar mass and colour, we find that the optically selected AGN fraction is $31.6 \pm 0.9$ per cent in strongly barred galaxies, $23.3 \pm 0.8$ per cent in weakly barred galaxies, and $14.2 \pm 0.6$ per cent in unbarred disc galaxies. These are highly statistically robust results, strengthening the tantalizing results in earlier works. Strongly barred galaxies have a higher fraction of AGNs than weakly barred galaxies, which in turn have a higher fraction than unbarred galaxies. Thus, while bars are not required in order to grow an SMBH in a disc galaxy, large-scale galactic bars appear to facilitate AGN fuelling, and the presence of a strong bar makes a disc galaxy more than twice as likely to host an AGN than an unbarred galaxy at all galaxy stellar masses and colours.

     
    more » « less
  4. ABSTRACT

    We study the alignments of galaxy spin axes with respect to cosmic web filaments as a function of various properties of the galaxies and their constituent bulges and discs. We exploit the SAMI Galaxy Survey to identify 3D spin axes from spatially resolved stellar kinematics and to decompose the galaxy into the kinematic bulge and disc components. The GAMA survey is used to reconstruct the cosmic filaments. The mass of the bulge, defined as the product of stellar mass and bulge-to-total flux ratio Mbulge = M⋆ × (B/T), is the primary parameter of correlation with spin–filament alignments: galaxies with lower bulge masses tend to have their spins parallel to the closest filament, while galaxies with higher bulge masses are more perpendicularly aligned. M⋆ and B/T separately show correlations, but they do not fully unravel spin–filament alignments. Other galaxy properties, such as visual morphology, stellar age, star formation activity, kinematic parameters, and local environment, are secondary tracers. Focussing on S0 galaxies, we find preferentially perpendicular alignments, with the signal dominated by high-mass S0 galaxies. Studying bulge and disc spin–filament alignments separately reveals additional information about the formation pathways of the corresponding galaxies: bulges tend to have more perpendicular alignments, while discs show different tendencies according to their kinematic features and the mass of the associated bulge. The observed correlation between the flipping of spin–filament alignments and the growth of the bulge can be explained by mergers, which drive both alignment flips and bulge formation.

     
    more » « less
  5. ABSTRACT Observations of massive galaxies at low redshift have revealed approximately linear scaling relations between the mass of a supermassive black hole (SMBH) and properties of its host galaxy. How these scaling relations evolve with redshift and whether they extend to lower-mass galaxies, however, remain open questions. Recent galaxy formation simulations predict a delayed, or ‘two-phase,’ growth of SMBHs: slow, highly intermittent BH growth due to repeated gas ejection by stellar feedback in low-mass galaxies, followed by more sustained gas accretion that eventually brings BHs on to the local scaling relations. The predicted two-phase growth implies a steep increase, or ‘kink,’ in BH-galaxy scaling relations at a stellar mass $\rm {M}_{*}\sim 5\times 10^{10}$ M⊙. We develop a parametric, semi-analytic model to compare different SMBH growth models against observations of the quasar luminosity function (QLF) at z ∼ 0.5−4. We compare models in which the relation between SMBH mass and galaxy mass is purely linear versus two-phase models. The models are anchored to the observed galaxy stellar mass function, and the BH mass functions at different redshifts are consistently connected by the accretion rates contributing to the QLF. The best fits suggest that two-phase evolution is significantly preferred by the QLF data over a purely linear scaling relation. Moreover, when the model parameters are left free, the two-phase model fits imply a transition mass consistent with that predicted by simulations. Our analysis motivates further observational tests, including measurements of BH masses and active galactic nuclei activity at the low-mass end, which could more directly test two-phase SMBH growth. 
    more » « less