skip to main content


Title: Examining quasar absorption-line analysis methods: the tension between simulations and observational assumptions key to modelling clouds
ABSTRACT

A key assumption in quasar absorption-line studies of the circumgalactic medium (CGM) is that each absorption component maps to a spatially isolated ‘cloud’ structure that has single valued properties (e.g. density, temperature, metallicity). We aim to assess and quantify the degree of accuracy underlying this assumption. We used adaptive mesh refinement hydrodynamic cosmological simulations of two z = 1 dwarf galaxies and generated synthetic quasar absorption-line spectra of their CGM. For the Si ii λ1260 transition, and the C iv λλ1548, 1550 and O vi λλ1031, 1037 fine-structure doublets, we objectively determined which gas cells along a line of sight (LOS) contribute to detected absorption. We implemented a fast, efficient, and objective method to define individual absorption components in each absorption profile. For each absorption component, we quantified the spatial distribution of the absorbing gas. We studied a total of 1302 absorption systems containing a total of 7755 absorption components. 48  per cent of Si ii, 68  per cent of C iv, and 72  per cent of O vi absorption components arise from two or more spatially isolated ‘cloud’ structures along the LOS. Spatially isolated ‘cloud’ structures were most likely to have cloud–cloud LOS separations of 0.03Rvir (1.3 kpc), 0.11Rvir (4.8 kpc), and 0.13Rvir (5.6 kpc) for Si ii, C iv, and O vi, respectively. There can be very little overlap between multiphase gas structures giving rise to absorption components. If our results reflect the underlying reality of how absorption lines record CGM gas, they place tension on current observational analysis methods as they suggest that component-by-component absorption-line formation is more complex than is assumed and applied for chemical-ionization modelling.

 
more » « less
NSF-PAR ID:
10484087
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
527
Issue:
4
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 10522-10537
Size(s):
["p. 10522-10537"]
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We report a tentative detection of the circumgalactic medium (CGM) of Wolf–Lundmark–Melotte (WLM), an isolated, low-mass (logM*/M⊙ ≈ 7.6), dwarf irregular galaxy in the Local Group (LG). We analyse an HST/COS archival spectrum of a quasar sightline (PHL2525), which is 45 kpc (0.5 virial radius) from WLM and close to the Magellanic Stream (MS). Along this sightline, two ion absorbers are detected in Si ii, Si iii, Si iv, C ii, and C iv at velocities of ∼−220 km s−1 (Component v-220) and ∼−150 km s−1 (Component v-150). To identify their origins, we study the position–velocity alignment of the components with WLM and the nearby MS. Near the magellanic longitude of PHL2525, the MS-related neutral and ionized gas moves at ≲−190 km s−1, suggesting an MS origin for Component v-220, but not for Component v-150. Because PHL2525 passes near WLM and Component v-150 is close to WLM’s systemic velocity (∼−132 km s−1), it is likely that Component v-150 arises from the galaxy’s CGM. This results in a total Si mass in WLM’s CGM of $M_{\rm Si}^{\rm CGM}\sim (0.2-1.0)\times 10^5~\mathrm{M}_\odot$ using assumption from other COS dwarf studies. Comparing $M_{\rm Si}^{\rm CGM}$ to the total Si mass synthesized in WLM over its lifetime (∼1.3 × 105 M⊙), we find ∼3 per cent is locked in stars, ∼6 per cent in the ISM, ∼15–77 per cent in the CGM, and the rest (∼14–76 per cent) is likely lost beyond the virial radius. Our finding resonates with other COS dwarf galaxy studies and theoretical predictions that low-mass galaxies can easily lose metals into their CGM due to stellar feedback and shallow gravitational potential.

     
    more » « less
  2. Abstract

    We use medium- and high-resolution spectroscopy of close pairs of quasars to analyze the circumgalactic medium (CGM) surrounding 32 damped Lyαabsorption systems (DLAs). The primary quasar sightline in each pair probes an intervening DLA in the redshift range 1.6 <zabs< 3.5, such that the secondary sightline probes absorption from Lyαand a large suite of metal-line transitions (including Oi, Cii, Civ, Siii, and Siiv) in the DLA host galaxy’s CGM at transverse distances 24 kpc ≤R≤ 284 kpc. Analysis of Lyαin the CGM sightlines shows an anticorrelation betweenRand Hicolumn density (NHI) with 99.8% confidence, similar to that observed around luminous galaxies. The incidences of Ciiand SiiiwithN> 1013cm−2within 100 kpc of DLAs are larger by 2σthan those measured in the CGM of Lyman break galaxies (Cf(NCII) > 0.89 andCf(NSiII)=0.750.17+0.12). Metallicity constraints derived from ionic ratios for nine CGM systems with negligible ionization corrections andNHI> 1018.5cm−2show a significant degree of scatter (with metallicities/limits across the range2.06logZ/Z0.75), suggesting inhomogeneity in the metal distribution in these environments. Velocity widths of Civλ1548 and low-ionization metal species in the DLA versus CGM sightlines are strongly (>2σ) correlated, suggesting that they trace the potential well of the host halo overR≲ 300 kpc scales. At the same time, velocity centroids for Civλ1548 differ in DLA versus CGM sightlines by >100 km s−1for ∼50% of velocity components, but few components have velocities that would exceed the escape velocity assuming dark matter host halos of ≥1012M.

     
    more » « less
  3. null (Ed.)
    ABSTRACT We present a systematic investigation of physical conditions and elemental abundances in four optically thick Lyman-limit systems (LLSs) at z = 0.36–0.6 discovered within the cosmic ultraviolet baryon survey (CUBS). Because intervening LLSs at z < 1 suppress far-UV (ultraviolet) light from background QSOs, an unbiased search of these absorbers requires a near-UV-selected QSO sample, as achieved by CUBS. CUBS LLSs exhibit multicomponent kinematic structure and a complex mix of multiphase gas, with associated metal transitions from multiple ionization states such as C ii, C iii, N iii, Mg ii, Si ii, Si iii, O ii, O iii, O vi, and Fe ii absorption that span several hundred km s−1 in line-of-sight velocity. Specifically, higher column density components (log N(H i)/cm−2≳ 16) in all four absorbers comprise dynamically cool gas with $\langle T \rangle =(2\pm 1) \times 10^4\,$K and modest non-thermal broadening of $\langle b_\mathrm{nt} \rangle =5\pm 3\,$km s−1. The high quality of the QSO absorption spectra allows us to infer the physical conditions of the gas, using a detailed ionization modelling that takes into account the resolved component structures of H i and metal transitions. The range of inferred gas densities indicates that these absorbers consist of spatially compact clouds with a median line-of-sight thickness of $160^{+140}_{-50}$ pc. While obtaining robust metallicity constraints for the low density, highly ionized phase remains challenging due to the uncertain $N\mathrm{(H\, {\small I})}$, we demonstrate that the cool-phase gas in LLSs has a median metallicity of $\mathrm{[\alpha /H]_{1/2}}=-0.7^{+0.1}_{-0.2}$, with a 16–84 percentile range of [α/H] = (−1.3, −0.1). Furthermore, the wide range of inferred elemental abundance ratios ([C/α], [N/α], and [Fe/α]) indicate a diversity of chemical enrichment histories. Combining the absorption data with deep galaxy survey data characterizing the galaxy environment of these absorbers, we discuss the physical connection between star-forming regions in galaxies and diffuse gas associated with optically thick absorption systems in the z < 1 circumgalactic medium. 
    more » « less
  4. ABSTRACT

    This paper presents a systematic study of the photoionization and thermodynamic properties of the cool circumgalactic medium (CGM) as traced by rest-frame ultraviolet absorption lines around 26 galaxies at redshift z ≲ 1. The study utilizes both high-quality far-ultraviolet and optical spectra of background QSOs and deep galaxy redshift surveys to characterize the gas density, temperature, and pressure of individual absorbing components and to resolve their internal non-thermal motions. The derived gas density spans more than three decades, from $\log (n_{\rm H}/{{\rm cm^{-3}}}) \approx -4$ to −1, while the temperature of the gas is confined in a narrow range of log (T/K) ≈ 4.3 ± 0.3. In addition, a weak anticorrelation between gas density and temperature is observed, consistent with the expectation of the gas being in photoionization equilibrium. Furthermore, decomposing the observed line widths into thermal and non-thermal contributions reveals that more than 30 per cent of the components at z ≲ 1 exhibit line widths driven by non-thermal motions, in comparison to <20 per cent found at z ≈ 2–3. Attributing the observed non-thermal line widths to intra-clump turbulence, we find that massive quenched galaxies on average exhibit higher non-thermal broadening/turbulent energy in their CGM compared to star-forming galaxies at z ≲ 1. Finally, strong absorption features from multiple ions covering a wide range of ionization energy (e.g. from Mg ii to O iv) can be present simultaneously in a single absorption system with kinematically aligned component structure, but the inferred pressure in different phases may differ by a factor of ≈10.

     
    more » « less
  5. ABSTRACT

    As part of our program to identify host galaxies of known z = 2–3 Mg ii absorbers with the Keck Cosmic Web Imager (KCWI), we discovered a compact group giving rise to a z = 2.431 DLA with ultrastrong Mg ii absorption in quasar field J234628+124859. The group consists of four star-forming galaxies within 8–28 kpc and v ∼ 40–340 km s−1 of each other, where tidal streams are weakly visible in deep HST imaging. The group geometric centre is D = 25 kpc from the quasar (D = 20–40 kpc for each galaxy). Galaxy G1 dominates the group (1.66L*, SFRFUV = 11.6 M⊙ yr−1) while G2, G3, and G4 are less massive (0.1–0.3L*, SFRFUV = 1.4–2.0 M⊙ yr−1). Using a VLT/UVES quasar spectrum covering the H i Lyman series and metal lines such as Mg ii, Si iii, and C iv, we characterized the kinematic structure and physical conditions along the line of sight with cloud-by-cloud multiphase Bayesian modelling. The absorption system has a total $\log (N({{{\rm H}\,\rm{\small I}}})/{\rm cm}^{-2})=20.53$ and an $N({{{\rm H}\,\rm{\small I}}})$-weighted mean metallicity of log (Z/Z⊙) = −0.68, with a very large Mg ii linewidth of Δv ∼ 700 km s−1. The highly kinematically complex profile is well modelled with 30 clouds across low- and intermediate-ionization phases with values ${13\lesssim \log (N({{{\rm H}\,\rm{\small I}}})/{\rm cm}^{-2})\lesssim 20}$ and −3 ≲ log (Z/Z⊙) ≲ 1. Comparing these properties to the galaxy properties, we infer a wide range of gaseous environments, including metal-rich outflows, metal-poor IGM accretion, and tidal streams from galaxy–galaxy interactions. This diversity of structures forms the intragroup medium around a complex compact group environment at the epoch of peak star formation activity. Surveys of low-redshift compact groups would benefit from obtaining a more complete census of this medium for characterizing evolutionary pathways.

     
    more » « less