skip to main content


Title: Teaching DNA Barcoding for the Identification of Algae
Here we discuss the design and implementation of an introductory DNA Barcoding module that we developed for the University of Hawai‘i at Mānoa’s Science in Action Program, a two-week summer program that teaches high school students about Hawai‘i’s biodiversity. Students used the concept of characterization to explain the relationships among organisms using morphological, ecological, and molecular data. Additionally, students gained experience in the scientific practice of generating explanations by gathering multiple lines of evidence to support or refute a claim, linking claims with evidence, and presenting such claims in written and oral formats to identify unknown algae samples. During this activity, students also gained real-world research experience in the field of biodiversity research. We also discuss potential modifications for future iterations of this module.  more » « less
Award ID(s):
1743117
NSF-PAR ID:
10484112
Author(s) / Creator(s):
;
Editor(s):
Seagroves, Scott; Barnes, Austin; Metevier, Anne; Porter, Jason; Hunter, Lisa
Publisher / Repository:
Institute for Scientist & Engineer Educators (ISEE)
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Vasconcelos, Sonia (Ed.)

    Undergraduate research experiences benefit students by immersing them in the work of scientists and often result in increased interest and commitment to careers in the sciences. Expanding access to Research Experience for Undergraduate (REU) programs has the potential to engage more students in authentic research experiences earlier in their academic careers and grow and diversify the geoscience workforce. The Research Experience for Community College Students (RECCS) was one of the first National Science Foundation (NSF)-funded REU programs exclusively for 2-year college students. In this study, we describe findings from five years of the RECCS program and report on outcomes from 54 students. The study collected closed- and open-ended responses on post-program reflection surveys to analyze both student and mentor perspectives on their experience. Specifically, we focus on students’ self-reported growth in areas such as research skills, confidence in their ability to do research, and belonging in the field, as well as the mentors’ assessment of students’ work and areas of growth, and the impact of the program on students’ academic and career paths. In addition, RECCS alumni were surveyed annually to update data on their academic and career pursuits. Our data show that RECCS students learned scientific and professional skills throughout the program, developed a sense of identity as a scientist, and increased their interest in and excitement for graduate school after the program. Through this research experience, students gained confidence in their ability to “do” science and insight into whether this path is a good fit for them. This study contributes to an emerging body of data examining the impact of REU programs on community college students and encourages geoscience REU programs to welcome and support more community college students.

     
    more » « less
  2. Computational thinking is identified as one of the “essential skills for 21st-Century students.” [1] Studies of CT in school programs are being funded by many organizations, including the United States National Science Foundation. In this paper, we describe “lessons learned” over the first two years of a research program (PREDICTS: Principles and Resources for Educators to Infuse Computational Thinking in the Sciences) with the goal of developing knowledge of how to integrate CT into introductory high school biology and chemistry classes for all students. Using curricular modules developed by program staff, two in biology and two in chemistry, teachers piloting the program engaged students in CT with computational evidence from authentic tools in order to develop understanding of science concepts. Each module, representing about a week of instruction, addresses science ideas in the prescribed course of study for high school programs. Project researchers have collected survey data on teachers’: (1) beliefs about effective science teaching; (2) beliefs about their effectiveness as a science teacher and their students’ ability to learn science, and; (3) content preparedness. In addition, we observed module implementation, collected and analyzed student artifacts, and interviewed teachers at the conclusion of module implementation. Preliminary results indicated some challenges (access to technology, varying levels of experience among students) and cause for optimism (student and teacher engagement in CT and the computational tools used in the modules). Continuing research efforts are described in this paper, along with descriptions of the curricular modules and the use of observations and “CT check-ins” to assess student engagement in, application of, and learning of CT. 
    more » « less
  3. Evidence has shown that facilitating student-centered learning (SCL) in STEM classrooms enhances student learning and satisfaction [1]–[3]. However, despite increased support from educational and government bodies to incorporate SCL practices [1], minimal changes have been made in undergraduate STEM curriculum [4]. Faculty often teach as they were taught, relying heavily on traditional lecture-based teaching to disseminate knowledge [4]. Though some faculty express the desire to improve their teaching strategies, they feel limited by a lack of time, training, and incentives [4], [5]. To maximize student learning while minimizing instructor effort to change content, courses can be designed to incorporate simpler, less time-consuming SCL strategies that still have a positive impact on student experience. In this paper, we present one example of utilizing a variety of simple SCL strategies throughout the design and implementation of a 4-week long module. This module focused on introductory tissue engineering concepts and was designed to help students learn foundational knowledge within the field as well as develop critical technical skills. Further, the module sought to develop important professional skills such as problem-solving, teamwork, and communication. During module design and implementation, evidence-based SCL teaching strategies were applied to ensure students developed important knowledge and skills within the short timeframe. Lectures featured discussion-based active learning exercises to encourage student engagement and peer collaboration [6]–[8]. The module was designed using a situated perspective, acknowledging that knowing is inseparable from doing [9], and therefore each week, the material taught in the two lecture sessions was directly applied to that week’s lab to reinforce students’ conceptual knowledge through hands-on activities and experimental outcomes. Additionally, the majority of assignments served as formative assessments to motivate student performance while providing instructors with feedback to identify misconceptions and make real-time module improvements [10]–[12]. Students anonymously responded to pre- and post-module surveys, which focused on topics such as student motivation for enrolling in the module, module expectations, and prior experience. Students were also surveyed for student satisfaction, learning gains, and graduate student teaching team (GSTT) performance. Data suggests a high level of student satisfaction, as most students’ expectations were met, and often exceeded. Students reported developing a deeper understanding of the field of tissue engineering and learning many of the targeted basic lab skills. In addition to hands-on skills, students gained confidence to participate in research and an appreciation for interacting with and learning from peers. Finally, responses with respect to GSTT performance indicated a perceived emphasis on a learner-centered and knowledge/community-centered approaches over assessment-centeredness [13]. Overall, student feedback indicated that SCL teaching strategies can enhance student learning outcomes and experience, even over the short timeframe of this module. Student recommendations for module improvement focused primarily on modifying the lecture content and laboratory component of the module, and not on changing the teaching strategies employed. The success of this module exemplifies how instructors can implement similar strategies to increase student engagement and encourage in-depth discussions without drastically increasing instructor effort to re-format course content. Introduction. 
    more » « less
  4. There remains a great deal of research to do on improving the transfer experience for students transitioning from two-year colleges to four-year colleges. In this paper, we describe data collected from interviewing current students at a large Midwestern research university who are members of a cohort program which will be adapted for transfer students to join. This cohort program is designed to give students – intending to major in the natural sciences, and predominantly from underrepresented backgrounds – support in academics, research experiences, and the social experience of integrating into the university. The interview protocol elicited discussion of these students' self-efficacy to complete their science degrees, navigate the academic requirements, and continue in their chosen life paths, specifically drawing out mastery, vicarious learning, and social persuasion experiences. We will discuss how student experience in the cohort program may support developing self-efficacy in the transfer process. 
    more » « less
  5. This project addresses the disconnect between science, design, and technology and how high school students can benefit from innovative learning experiences in plant science that integrate these disciplines while gaining interest in and skills for future STEM careers. We created a project-based 3D modeling learning module with educators as facilitators and students working in collaborative teams of self-identified science, technophile, and art students. Students created 3D models of plants under research at the Donald Danforth Plant Science Center and learned about the applications of 3D modeling in augmented and virtual reality platforms. They also disseminated their project results through handouts and presentations. We used a mixed-methods approach to assess the impact of implementing this module on students’ learning and interests in STEAM subjects and careers. We found that students are more aware of the intersection of art and design with science and gained literacy in plant science, design, and technology. The students also gained 21st century skills such as collaboration, communication, creative thinking, and problem-solving and showed more interest in STEAM subjects and careers. This project contributes to the body of knowledge on theory, best practices, and practical technological applications in STEAM education. 
    more » « less