skip to main content

This content will become publicly available on December 5, 2024

Title: Alternative end-joining results in smaller deletions in heterochromatin relative to euchromatin
Pericentromeric heterochromatin is highly enriched for repetitive sequences prone to aberrant recombination. Previous studies showed that homologous recombination (HR) repair is uniquely regulated in this domain to enable ‘safe’ repair while preventing aberrant recombination. In Drosophila cells, DNA double-strand breaks (DSBs) relocalize to the nuclear periphery through nuclear actin-driven directed motions before recruiting the strand invasion protein Rad51 and completing HR repair. End-joining (EJ) repair also occurs with high frequency in heterochromatin of fly tissues, but how alternative EJ (alt-EJ) pathways operate in heterochromatin remains largely uncharacterized. Here, we induce DSBs in single euchromatic and heterochromatic sites using a new system that combines the DR-white reporter and I-SceI expression in spermatogonia of flies. Using this approach, we detect higher frequency of HR repair in heterochromatin, relative to euchromatin. Further, sequencing of mutagenic repair junctions reveals the preferential use of different EJ pathways across distinct euchromatic and heterochromatic sites. Interestingly, synthesis-dependent microhomology-mediated end joining (SD-MMEJ) appears differentially regulated in the two domains, with a preferential use of motifs close to the cut site in heterochromatin relative to euchromatin, resulting in smaller deletions. Together, these studies establish a new approach to study repair outcomes in fly tissues, and support the conclusion that heterochromatin uses more HR and less mutagenic EJ repair relative to euchromatin.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Date Published:
Journal Name:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Heterochromatin mostly comprises repeated DNA sequences prone to ectopic recombination. In Drosophila cells, ‘safe’ homologous recombination (HR) repair of heterochromatic double-strand breaks (DSBs) requires relocalization of repair sites to the nuclear periphery before Rad51 recruitment and strand invasion. Relocalization is driven by nuclear actin filaments and myosins, while anchoring is mediated by the Nup107 complex at nuclear pores. Here, we show an additional ‘off pore’ role of nucleoporins in heterochromatin repair. Sec13 and Nup88 independently recruit Nup98 to DSBs before relocalization and downstream from the Smc5/6 complex and SUMOylation. Remarkably, the phase separation properties of Nup98 are required and sufficient to induce the mobilization of repair sites and to exclude Rad51, thus preventing aberrant recombination while facilitating HR repair. Disrupting this pathway results in heterochromatin repair defects, revealing a novel role for nucleoporins and phase separation in nuclear dynamics and genome integrity in a multicellular eukaryote. 
    more » « less
  2. In this chapter, we describe a method for the recovery and analysis of alternative end-joining (alt-EJ) DNA double-strand break repair junctions following I-SceI cutting in Drosophila melanogaster embryos. Alt-EJ can be defined as a set of Ku70/80 and DNA ligase 4-independent end-joining processes that are typically mutagenic, producing deletions, insertions, and chromosomal rearrangements more frequently than higher-fidelity repair pathways such as classical nonhomologous end joining or homologous recombination. Alt-EJ has been observed to be upregulated in HR-deficient tumors and is essential for the survival and proliferation of these cells. Alt-EJ shares many initial processing steps with homologous recombination, specifically end resection; therefore, studying alt-EJ repair junctions can provide useful insight into aborted HR repair. Here, we describe the injection of plasmid constructs with specific cut sites into Drosophila embryos and the subsequent recovery of alt-EJ repair products. We also describe different analytical approaches using this system and how amplicon sequencing can be used to provide mechanistic information about alt-EJ. 
    more » « less
  3. Heterochromatin is mostly composed of long stretches of repeated DNA sequences prone to ectopic recombination during double-strand break (DSB) repair. In Drosophila, “safe” homologous recombination (HR) repair of heterochromatic DSBs relies on a striking relocalization of repair sites to the nuclear periphery. Central to understanding heterochromatin repair is the ability to investigate the 4D dynamics (movement in space and time) of repair sites. A specific challenge of these studies is preventing phototoxicity and photobleaching effects while imaging the sample over long periods of time, and with sufficient time points and Z-stacks to track repair foci over time. Here we describe an optimized approach for high-resolution live imaging of heterochromatic DSBs in Drosophila cells, with a specific emphasis on the fluorescent markers and imaging setup used to capture the motion of repair foci over long-time periods. We detail approaches that minimize photobleaching and phototoxicity with a DeltaVision widefield deconvolution microscope, and image processing techniques for signal recovery postimaging using SoftWorX and Imaris software. We present a method to derive mean square displacement curves revealing some of the biophysical properties of the motion. Finally, we describe a method in R to identify tracts of directed motions (DMs) in mixed trajectories. These approaches enable a deeper understanding of the mechanisms of heterochromatin dynamics and genome stability in the three-dimensional context of the nucleus and have broad applicability in the field of nuclear dynamics. 
    more » « less
  4. Pericentromeric heterochromatin is mostly composed of repetitive DNA sequences prone to aberrant recombination. Cells have developed highly specialized mechanisms to enable ‘safe’ homologous recombination (HR) repair while preventing aberrant recombination in this domain. Understanding heterochromatin repair responses is essential to understanding the critical mechanisms responsible for genome integrity and tumor suppression. Here, we review the tools, approaches, and methods currently available to investigate double-strand break (DSB) repair in pericentromeric regions, and also suggest how technologies recently developed for euchromatin repair studies can be adapted to characterize responses in heterochromatin. With this ever-growing toolkit, we are witnessing exciting progress in our understanding of how the ‘dark matter’ of the genome is repaired, greatly improving our understanding of genome stability mechanisms. 
    more » « less
  5. null (Ed.)
    Pericentromeric heterochromatin is mostly composed of repeated DNA sequences, which are prone to aberrant recombination during double-strand break (DSB) repair. Studies in Drosophila and mouse cells revealed that ‘safe’ homologous recombination (HR) repair of these sequences relies on the relocalization of repair sites to outside the heterochromatin domain before Rad51 recruitment. Relocalization requires a striking network of nuclear actin filaments (F-actin) and myosins that drive directed motions. Understanding this pathway requires the detection of nuclear actin filaments that are significantly less abundant than those in the cytoplasm, and the imaging and tracking of repair sites for long time periods. Here, we describe an optimized protocol for live cell imaging of nuclear F-actin in Drosophila cells, and for repair focus tracking in mouse cells, including: imaging setup, image processing approaches, and analysis methods. We emphasize approaches that can be applied to identify the most effective fluorescent markers for live cell imaging, strategies to minimize photobleaching and phototoxicity with a DeltaVision deconvolution microscope, and image processing and analysis methods using SoftWoRx and Imaris software. These approaches enable a deeper understanding of the spatial and temporal dynamics of heterochromatin repair and have broad applicability in the fields of nuclear architecture, nuclear dynamics, and DNA repair. 
    more » « less