Abstract Recent developments in very long baseline interferometry (VLBI) have made it possible for the Event Horizon Telescope (EHT) to resolve the innermost accretion flows of the largest supermassive black holes on the sky. The sparse nature of the EHT’s ( u , v )-coverage presents a challenge when attempting to resolve highly time-variable sources. We demonstrate that the changing ( u , v )-coverage of the EHT can contain regions of time over the course of a single observation that facilitate dynamical imaging. These optimal time regions typically have projected baseline distributions that are approximately angularly isotropic and radially homogeneous. We derive a metric of coverage quality based on baseline isotropy and density that is capable of ranking array configurations by their ability to produce accurate dynamical reconstructions. We compare this metric to existing metrics in the literature and investigate their utility by performing dynamical reconstructions on synthetic data from simulated EHT observations of sources with simple orbital variability. We then use these results to make recommendations for imaging the 2017 EHT Sgr A* data set. 
                        more » 
                        « less   
                    
                            
                            Expanding Sgr A* dynamical imaging capabilities with an African extension to the Event Horizon Telescope
                        
                    
    
            Context.The Event Horizon Telescope (EHT) has recently published the first images of the supermassive black hole at the center of our Galaxy, Sagittarius A* (Sgr A*). Imaging Sgr A* is plagued by two major challenges: variability on short (approximately minutes) timescales and interstellar scattering along our line of sight. While the scattering is well studied, the source variability continues to push the limits of current imaging algorithms. In particular, movie reconstructions are hindered by the sparse and time-variable coverage of the array. Aims.In this paper, we study the impact of the planned Africa Millimetre Telescope (AMT, in Namibia) and Canary Islands telescope (CNI) additions to the time-dependent coverage and imaging fidelity of the EHT array. This African array addition to the EHT further increases the eastwest (u, v) coverage and provides a wider time window to perform high-fidelity movie reconstructions of Sgr A*. Methods.We generated synthetic observations of Sgr A*’s accretion flow and used dynamical imaging techniques to create movie reconstructions of the source. To test the fidelity of our results, we used one general-relativistic magneto-hydrodynamic model of the accretion flow and jet to represent the quiescent state and one semi-analytic model of an orbiting hotspot to represent the flaring state. Results.We found that the addition of the AMT alone offers a significant increase in the (u, v) coverage, leading to robust averaged images during the first hours of the observating track. Moreover, we show that the combination of two telescopes on the African continent, in Namibia and in the Canary Islands, produces a very sensitive array to reconstruct the variability of Sgr A* on horizon scales. Conclusions.We conclude that the African expansion to the EHT increases the fidelity of high-resolution movie reconstructions of Sgr A* to study gas dynamics near the event horizon. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10484171
- Publisher / Repository:
- A&A
- Date Published:
- Journal Name:
- Astronomy & Astrophysics
- Volume:
- 672
- ISSN:
- 0004-6361
- Page Range / eLocation ID:
- A16
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Event Horizon Telescope (EHT) images of the horizon-scale emission around the Galactic center supermassive black hole Sagittarius A* (Sgr A*) favor accretion flow models with a jet component. However, this jet has not been conclusively detected. Using the “best-bet” models of Sgr A* from the EHT Collaboration, we assess whether this nondetection is expected for current facilities and explore the prospects of detecting a jet with very-long-baseline interferometry (VLBI) at four frequencies: 86, 115, 230, and 345 GHz. We produce synthetic image reconstructions for current and next-generation VLBI arrays at these frequencies that include the effects of interstellar scattering, optical depth, and time variability. We find that no existing VLBI arrays are expected to detect the jet in these best-bet models, consistent with observations to date. We show that next-generation VLBI arrays at 86 and 115 GHz—in particular, the EHT after upgrades through the ngEHT program and the ngVLA—successfully capture the jet in our tests due to improvements in instrument sensitivity and (u,v) coverage at spatial scales critical to jet detection. These results highlight the potential of enhanced VLBI capabilities in the coming decade to reveal the crucial properties of Sgr A* and its interaction with the Galactic center environment.more » « less
- 
            Abstract We present the first event-horizon-scale images and spatiotemporal analysis of Sgr A* taken with the Event Horizon Telescope in 2017 April at a wavelength of 1.3 mm. Imaging of Sgr A* has been conducted through surveys over a wide range of imaging assumptions using the classical CLEAN algorithm, regularized maximum likelihood methods, and a Bayesian posterior sampling method. Different prescriptions have been used to account for scattering effects by the interstellar medium toward the Galactic center. Mitigation of the rapid intraday variability that characterizes Sgr A* has been carried out through the addition of a “variability noise budget” in the observed visibilities, facilitating the reconstruction of static full-track images. Our static reconstructions of Sgr A* can be clustered into four representative morphologies that correspond to ring images with three different azimuthal brightness distributions and a small cluster that contains diverse nonring morphologies. Based on our extensive analysis of the effects of sparse ( u , v )-coverage, source variability, and interstellar scattering, as well as studies of simulated visibility data, we conclude that the Event Horizon Telescope Sgr A* data show compelling evidence for an image that is dominated by a bright ring of emission with a ring diameter of ∼50 μ as, consistent with the expected “shadow” of a 4 × 10 6 M ⊙ black hole in the Galactic center located at a distance of 8 kpc.more » « less
- 
            Context. In a series of publications, we describe a comprehensive comparison of Event Horizon Telescope (EHT) data with theoretical models of the observed Sagittarius A* (Sgr A*) and Messier 87* (M87*) horizon-scale sources. Aims. In this article, we report on improvements made to our observational data reduction pipeline and present the generation of observables derived from the EHT models. We make use of ray-traced general relativistic magnetohydrodynamic simulations that are based on different black hole spacetime metrics and accretion physics parameters. These broad classes of models provide a good representation of the primary targets observed by the EHT. Methods. We describe how we combined multiple frequency bands and polarization channels of the observational data to improve our fringe-finding sensitivity and stabilization of atmospheric phase fluctuations. To generate realistic synthetic data from our models, we took the signal path as well as the calibration process, and thereby the aforementioned improvements, into account. We could thus produce synthetic visibilities akin to calibrated EHT data and identify salient features for the discrimination of model parameters. Results. We have produced a library consisting of an unparalleled 962 000 synthetic Sgr A*and M87*datasets. In terms of baseline coverage and noise properties, the library encompasses 2017 EHT measurements as well as future observations with an extended telescope array. Conclusions. We differentiate between robust visibility data products related to model features and data products that are strongly affected by data corruption effects. Parameter inference is mostly limited by intrinsic model variability, which highlights the importance of long-term monitoring observations with the EHT. In later papers in this series, we will show how a Bayesian neural network trained on our synthetic data is capable of dealing with the model variability and extracting physical parameters from EHT observations. With our calibration improvements, our newly reduced EHT datasets have a considerably better quality compared to previously analyzed data.more » « less
- 
            Abstract The Event Horizon Telescope (EHT) has produced images of the plasma flow around the supermassive black holes in Sgr A* and M87* with a resolution comparable to the projected size of their event horizons. Observations with the next-generation Event Horizon Telescope (ngEHT) will have significantly improved Fourier plane coverage and will be conducted at multiple frequency bands (86, 230, and 345 GHz), each with a wide bandwidth. At these frequencies, both Sgr A* and M87* transition from optically thin to optically thick. Resolved spectral index maps in the near-horizon and jet-launching regions of these supermassive black hole sources can constrain properties of the emitting plasma that are degenerate in single-frequency images. In addition, combining information from data obtained at multiple frequencies is a powerful tool for interferometric image reconstruction, since gaps in spatial scales in single-frequency observations can be filled in with information from other frequencies. Here we present a new method of simultaneously reconstructing interferometric images at multiple frequencies along with their spectral index maps. The method is based on existing regularized maximum likelihood (RML) methods commonly used for EHT imaging and is implemented in theeht-imagingPython software library. We show results of this method on simulated ngEHT data sets as well as on real data from the Very Long Baseline Array and Atacama Large Millimeter/submillimeter Array. These examples demonstrate that simultaneous RML multifrequency image reconstruction produces higher-quality and more scientifically useful results than is possible from combining independent image reconstructions at each frequency.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    