skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Technical note: A volumetric method for measuring the longitudinal arch of human tracks and feet
Abstract Fossil footprints (i.e., tracks) were believed to document arch anatomical evolution, although our recent work has shown that track arches record foot kinematics instead. Analyses of track arches can thereby inform the evolution of human locomotion, although quantifying this 3‐D aspect of track morphology is difficult. Here, we present a volumetric method for measuring the arches of 3‐D models of human tracks and feet, using both Autodesk Maya and Blender software. The method involves generation of a 3‐D object that represents the space beneath the longitudinal arch, and measurement of that arch object's geometry and spatial orientation. We provide relevant tools and guidance for users to apply this technique to their own data. We present three case studies to demonstrate potential applications. These include, (1) measuring the arches of static and dynamic human feet, (2) comparing the arches of human tracks with the arches of the feet that made them, and (3) direct comparisons of human track and foot arch morphology throughout simulated track formation. The volumetric measurement tool proved robust for measuring 3‐D models of human tracks and feet, in static and dynamic contexts. This tool enables researchers to quantitatively compare arches of fossil hominin tracks, in order to derive biomechanical interpretations from them, and/or offers a different approach for quantifying foot morphology in living humans.  more » « less
Award ID(s):
1825403
PAR ID:
10484181
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
American Journal of Biological Anthropology
ISSN:
2692-7691
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The emergence of bipedalism had profound effects on human evolutionary history, but the evolution of locomotor patterns within the hominin clade remains poorly understood. Fossil tracks record in vivo behaviours of extinct hominins, and they offer great potential to reveal locomotor patterns at various times and places across the human fossil record. However, there is no consensus on how to interpret anatomical or biomechanical patterns from tracks due to limited knowledge of the complex foot–substrate interactions through which they are produced. Here, we implement engineering-based methods to understand human track formation with the ultimate goal of unlocking invaluable information on hominin locomotion from fossil tracks. We first developed biplanar X-ray and three-dimensional animation techniques that permit visualization of subsurface foot motion as tracks are produced, and that allow for direct comparisons of foot kinematics to final track morphology. We then applied the discrete element method to accurately simulate the process of human track formation, allowing for direct study of human track ontogeny. This window lets us observe how specific anatomical and/or kinematic variables shape human track morphology, and it offers a new avenue for robust hypothesis testing in order to infer patterns of foot anatomy and motion from fossil hominin tracks. 
    more » « less
  2. Bistable shallow arches are ubiquitous in many engineering systems ranging from compliant mechanisms and biomedical stents to energy harvesters and passive fluidic controllers. In all these scenarios, the bistable states of the arch and the sudden transitions between them via snap-through instability are harnessed. However, bistable arches have been traditionally studied and characterized by triggering snap-through instability using quasi-static forces. Here, we analytically examine the effect of oscillatory loads on bistable arches and investigate the dynamic behaviors ranging from intrawell motion to periodic and chaotic interwell motion. The linear and nonlinear dynamic responses of both elastically and plastically deformed shallow arches are presented. Introducing an energy potential criterion, we classify the structure’s behavior within the parameter space. This energy-based approach allows us to explore the parameter space for high-dimensional models of the arch by varying the force amplitude and excitation frequency. Bifurcation diagrams, Lyapunov exponents, and maximum critical energy plots are presented to characterize the dynamic response of the system. Our results reveal that unstable solutions admitted through higher modes govern the critical energy required for interwell motion. This study investigates the rich nonlinear dynamic behavior of the arch element and it introduces an energy potential criterion that can scale easily to classify motion of arrays of bistable arches for future developments of multistable mechanical metamaterials. 
    more » « less
  3. null (Ed.)
    Mechanical forces are essential for proper growth and remodeling of the primitive pharyngeal arch arteries (PAAs) into the great vessels of the heart. Despite general acknowledgement of a hemodynamic-malformation link, the direct correlation between hemodynamics and PAA morphogenesis remains poorly understood. The elusiveness is largely due to difficulty in performing isolated hemodynamic perturbations and quantifying changes in-vivo. Previous in-vivo arch artery occlusion/ablation experiments either did not isolate the effects of hemodynamics, did not analyze the results in a 3D context or did not consider the effects of varying degrees of occlusion. Here, we overcome these limitations by combining minimally invasive occlusion experiments in the avian embryo with 3D anatomical models of development and in-silico testing of experimental phenomenon. We detail morphological and hemodynamic changes 24 hours post vessel occlusion. 3D anatomical models showed that occlusion geometries had more circular cross-sectional areas and more elongated arches than their control counterparts. Computational fluid dynamics revealed a marked change in wall shear stress-morphology trends. Instantaneous (in-silico) occlusion models provided mechanistic insights into the dynamic vessel adaptation process, predicting pressure-area trends for a number of experimental occlusion arches. We follow the propagation of small defects in a single embryo Hamburger Hamilton (HH) Stage 18 embryo to a more serious defect in an HH29 embryo. Results demonstrate that hemodynamic perturbation of the presumptive aortic arch, through varying degrees of vessel occlusion, overrides natural growth mechanisms and prevents it from becoming the dominant arch of the aorta. 
    more » « less
  4. Abstract BackgroundPrevious research shows kinematic and kinetic coupling between the metatarsophalangeal (MTP) and midtarsal joints during gait. Studying the effects of MTP position as well as foot structure on this coupling may help determine to what extent foot coupling during dynamic and active movement is due to the windlass mechanism. This study's purpose was to investigate the kinematic and kinetic foot coupling during controlled passive, active, and dynamic movements. MethodsAfter arch height and flexibility were measured, participants performed four conditions: Seated Passive MTP Extension, Seated Active MTP Extension, Standing Passive MTP Extension, and Standing Active MTP Extension. Next, participants performed three heel raise conditions that manipulated the starting position of the MTP joint: Neutral, Toe Extension, and Toe Flexion. A multisegment foot model was created in Visual 3D and used to calculate ankle, midtarsal, and MTP joint kinematics and kinetics. ResultsKinematic coupling (ratio of midtarsal to MTP angular displacement) was approximately six times greater in Neutral heel raises compared to Seated Passive MTP Extension, suggesting that the windlass only plays a small kinematic role in dynamic tasks. As the starting position of the MTP joint became increasingly extended during heel raises, the amount of negative work at the MTP joint and positive work at the midtarsal joint increased proportionally, while distal‐to‐hindfoot work remained unchanged. Correlations suggest that there is not a strong relationship between static arch height/flexibility and kinematic foot coupling. ConclusionsOur results show that there is kinematic and kinetic coupling within the distal foot, but this coupling is attributed only in small measure to the windlass mechanism. Additional sources of coupling include foot muscles and elastic energy storage and return within ligaments and tendons. Furthermore, our results suggest that the plantar aponeurosis does not function as a rigid cable but likely has extensibility that affects the effectiveness of the windlass mechanism. Arch structure did not affect foot coupling, suggesting that static arch height or arch flexibility alone may not be adequate predictors of dynamic foot function. 
    more » « less
  5. Abstract The dynamic properties of freestanding rock landforms are a function of fundamental material and mechanical parameters, facilitating noninvasive vibration‐based structural assessment. Characterization of resonant frequencies, mode shapes, and damping ratios, however, can be challenging at culturally sensitive geologic features, such as rock arches, where physical access is limited. Using sparse ambient vibration measurements, we describe three resonant modes between 1 and 40 Hz for 17 natural arches in Utah spanning a range of lengths from 3–88 m. Modal polarization data are evaluated to combine field observations with 3‐D numerical models. We find outcrop‐scale elastic moduli vary from 0.8 to 8.0 GPa, correlated with diagenetic processes and identify low damping at all sites. Correlation of dense‐array measurements from one arch validates predictions of simple bending modes and fixed boundary conditions. Our results establish use of sparse ambient resonance measurements for structural assessment and monitoring of arches and similar freestanding geologic features worldwide. 
    more » « less