Two-color, two-photon laser-induced fluorescence experiments were performed to probe the intermolecular interactions within the Ar + I2(E, vE = 0–3) potential energy surfaces. Spectra were recorded using the lowest-energy T-shaped level and an excited intermolecular vibrational level with bending excitation within the Ar + I2(B, vB = 23) potential as intermediate levels to guide the spectral assignments. Progressions of intermolecular stretching and bending levels bound within the Ar + I2(E, vE) potentials were identified, and their vibrational frequencies were determined. The harmonic frequency and anharmonic constant for the bending vibrational mode were determined to be ωe(b) ∼ 34.8 cm−1 and ωeχe(b) ∼ 0.3 cm−1. The frequency and anharmonic constant for the stretching mode were found to be the same as reported previously [V.V. Baturo, et al. Chem. Phys. Lett. 647 (2016) 161], ωe(s) = 37.2(1.1) cm−1 and ωeχe(s) = 1.8(2) cm−1.
more »
« less
Non-adiabatic dissociation dynamics of Ar⋯I2 (E, v) intermolecular vibrational levels probed using velocity-map imaging
Ion time-of-flight velocity-map imaging was used to measure the kinetic-energy distributions of the I2 ion-pair fragments formed after photoexcitation of Ar⋯I2 complexes to intermolecular vibrational levels bound within the Ar + I2 (E, vE = 0–2) potential energy surfaces. The kinetic-energy distributions of the I2 products indicate that complexes in the Ar⋯I2 (E, vE) levels preferentially dissociate into I2 in the D and β ion-pair states with no change in I2 vibrational excitation. The energetics of the levels prepared suggest that there is a non-adiabatic coupling of the initially prepared levels with the continuum of states lying above the Ar + I2 (D, vD = vE) and Ar + I2 (β, vβ = vE) dissociation limits. The angular anisotropies of the I2 product signals collected for many of the Ar⋯I2 (E, vE) levels have maxima parallel to the laser polarization axis. This contradicts expectations for the prompt dissociation of complexes with T-shaped geometries, which would result in images with maxima perpendicular to the polarization axis. These anisotropies suggest that there is a perturbation of the transition moment in these clusters or there are additional intermolecular interactions, likely those sampled while traversing above the attractive wells of the lower-energy potentials during dissociation. I2 (D′, vD′) products are also identified when preparing several of the low-lying levels localized in the T-shaped well of the Ar + I2 (E, vE = 0–2) potentials, and they are formed in multiple νD′ vibrational levels spanning energy ranges up to 500 cm−1.
more »
« less
- Award ID(s):
- 2102241
- PAR ID:
- 10484206
- Publisher / Repository:
- American Institutes of Physics
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 159
- Issue:
- 10
- ISSN:
- 0021-9606
- Subject(s) / Keyword(s):
- Electronic coupling, Transition moment, Intermolecular potentials, Van der Waals molecules, Velocity map imaging, Lasers, Intermolecular forces, Photoexcitation, Photodissociation spectroscopy
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The vibrational predissociation dynamics of H2/D2···I35Cl(B,v′=3) complexes containing both para- and ortho-hydrogen prepared in different intermolecular vibrational levels were investigated. The Δv = −1 I35Cl(B,v = 2,j) rotational product-state distributions measured for excitation to the lowest-energy T-shaped levels of these complexes are mostly bimodal. The rotational distributions measured for excitation of the H2···I35Cl(B,v′=3) complexes are colder than those of the D2···I35Cl(B,v′=3) complexes, and there are only slight differences between those measured for the para- and ortho-hydrogen containing complexes. Excitation of the delocalized bending levels results in slightly colder rotational product-state distributions. The distributions suggest the dynamics result from more than impulsive dissociation off of the inner repulsive wall of the lower-energy H2/D2 + I35Cl(B,v = 2) potential surfaces of the products. The depths of these potentials and the energies available to these products also contribute to the dynamics. The formation of the Δv = −2, I35Cl(B,v = 1) product channel was only identified for excitation of levels within the ortho(j = 0)-D2 + I35Cl(B,v′=3) potential. The formation of this channel occurs via I35Cl(B,v′=3) vibrational to D2 rotational energy transfer forming the ortho(j = 2)-D2 + I35Cl(B,v = 1,j) products.more » « less
-
Abstract The electronic structure of magnetic lanthanide atoms is fascinating from a fundamental perspective. They have electrons in a submerged open 4f shell lying beneath a filled 6s shell with strong relativistic correlations leading to a large magnetic moment and large electronic orbital angular momentum. This large angular momentum leads to strong anisotropies, i. e. orientation dependencies, in their mutual interactions. The long-ranged molecular anisotropies are crucial for proposals to use ultracold lanthanide atoms in spin-based quantum computers, the realization of exotic states in correlated matter, and the simulation of orbitronics found in magnetic technologies. Short-ranged interactions and bond formation among these atomic species have thus far not been well characterized. Efficient relativistic computations are required. Here, for the first time we theoretically determine the electronic and ro-vibrational states of heavy homonuclear lanthanide Er 2 and Tm 2 molecules by applying state-of-the-art relativistic methods. In spite of the complexity of their internal structure, we were able to obtain reliable spin–orbit and correlation-induced splittings between the 91 Er 2 and 36 Tm 2 electronic potentials dissociating to two ground-state atoms. A tensor analysis allows us to expand the potentials between the atoms in terms of a sum of seven spin–spin tensor operators simplifying future research. The strengths of the tensor operators as functions of atom separation are presented and relationships among the strengths, derived from the dispersive long-range interactions, are explained. Finally, low-lying spectroscopically relevant ro-vibrational energy levels are computed with coupled-channels calculations and analyzed.more » « less
-
Two new flexible-monomer two-body ab initio potential energy surfaces (PESs) for the neon and krypton van der Waals complexes with carbon dioxide were developed, extending our previous work on the Ar–CO2 molecule. The accuracy of the PESs was validated by their agreement with the vibrational spectrum of the rare-gas complexes. The intermolecular and intramolecular vibrational excitation energies were computed at the vibrational self-consistent field and vibrational configuration interaction levels of theory. Overall, the agreement between theory and experiment is excellent throughout the vibrational spectra. The observed slight splitting of the bending modes, resulting from their nondegeneracy in the complexes, is confirmed by our computations, and the results qualitatively agree with the experiment. The splitting increases with increasing polarizability of the rare-gas atom. Additionally, we explain a discrepancy in the mode assignment in the intermolecular region of the neon complex with our VCI character assignment.more » « less
-
While a number of O-H and O-D vibrational lines have been observed for hydrogen and deuterium in β-Ga2O3, it has been commonly reported that there is no absorption with a component of the polarization E parallel to the [010], or b, axis. This experimental result has led to O-H defect structures that involve shifted configurations of a vacancy at the tetrahedrally coordinated Ga(1) site [VGa(1)] and have ruled out structures that involve a vacancy at the octahedrally coordinated Ga(2) site [VGa(2)], because these structures are predicted to show absorption for E//[010]. In this Letter, weak O-D lines at 2475 and 2493 cm−1 with a component of their polarization with E//[010] are reported for β-Ga2O3 that had been annealed in a D2 ambient. O-D defect structures involving an unshifted VGa(2) are proposed for these centers. An estimate is made that the concentration of VGa(2) in a Czochralski-grown sample is 2–3 orders of magnitude lower than that of VGa(1) from the intensities of the IR absorption lines.more » « less
An official website of the United States government

