skip to main content


Title: Fire Influence on Regional to Global Environments and Air Quality (FIREX‐AQ)
Abstract

The NOAA/NASA Fire Influence on Regional to Global Environments and Air Quality (FIREX‐AQ) experiment was a multi‐agency, inter‐disciplinary research effort to: (a) obtain detailed measurements of trace gas and aerosol emissions from wildfires and prescribed fires using aircraft, satellites and ground‐based instruments, (b) make extensive suborbital remote sensing measurements of fire dynamics, (c) assess local, regional, and global modeling of fires, and (d) strengthen connections to observables on the ground such as fuels and fuel consumption and satellite products such as burned area and fire radiative power. From Boise, ID western wildfires were studied with the NASA DC‐8 and two NOAA Twin Otter aircraft. The high‐altitude NASA ER‐2 was deployed from Palmdale, CA to observe some of these fires in conjunction with satellite overpasses and the other aircraft. Further research was conducted on three mobile laboratories and ground sites, and 17 different modeling forecast and analyses products for fire, fuels and air quality and climate implications. From Salina, KS the DC‐8 investigated 87 smaller fires in the Southeast with remote and in‐situ data collection. Sampling by all platforms was designed to measure emissions of trace gases and aerosols with multiple transects to capture the chemical transformation of these emissions and perform remote sensing observations of fire and smoke plumes under day and night conditions. The emissions were linked to fuels consumed and fire radiative power using orbital and suborbital remote sensing observations collected during overflights of the fires and smoke plumes and ground sampling of fuels.

 
more » « less
Award ID(s):
1748266
NSF-PAR ID:
10484214
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Corporate Creator(s):
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
128
Issue:
2
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Extensive airborne measurements of non-methane organic gases (NMOGs), methane, nitrogen oxides, reduced nitrogen species, and aerosol emissions from US wild and prescribed fires were conducted during the 2019 NOAA/NASA Fire Influence on Regional to Global Environments and Air Quality campaign (FIREX-AQ). Here, we report the atmospheric enhancement ratios (ERs) and inferred emission factors (EFs) for compounds measured on board the NASA DC-8 research aircraft for nine wildfires and one prescribed fire, which encompass a range of vegetation types. We use photochemical proxies to identify young smoke and reduce the effects of chemical degradation on our emissions calculations. ERs and EFs calculated from FIREX-AQ observations agree within a factor of 2, with values reported from previous laboratory and field studies for more than 80 % of the carbon- and nitrogen-containing species. Wildfire emissions are parameterized based on correlations of the sum of NMOGs with reactive nitrogen oxides (NOy) to modified combustion efficiency (MCE) as well as other chemical signatures indicative of flaming/smoldering combustion, including carbon monoxide (CO), nitrogen dioxide (NO2), and black carbon aerosol. The sum of primary NMOG EFs correlates to MCE with an R2 of 0.68 and a slope of −296 ± 51 g kg−1, consistent with previous studies. The sum of the NMOG mixing ratios correlates well with CO with an R2 of 0.98 and a slope of 137 ± 4 ppbv of NMOGs per parts per million by volume (ppmv) of CO, demonstrating that primary NMOG emissions can be estimated from CO. Individual nitrogen-containing species correlate better with NO2, NOy, and black carbon than with CO. More than half of the NOy in fresh plumes is NO2 with an R2 of 0.95 and a ratio of NO2 to NOy of 0.55 ± 0.05 ppbv ppbv−1, highlighting that fast photochemistry had already occurred in the sampled fire plumes. The ratio of NOy to the sum of NMOGs follows trends observed in laboratory experiments and increases exponentially with MCE, due to increased emission of key nitrogen species and reduced emission of NMOGs at higher MCE during flaming combustion. These parameterizations will provide more accurate boundary conditions for modeling and satellite studies of fire plume chemistry and evolution to predict the downwind formation of secondary pollutants, including ozone and secondary organic aerosol.

     
    more » « less
  2. Abstract

    Wildfire is a natural and integral ecosystem process that is necessary to maintain species composition, structure, and ecosystem function. Extreme fires have been increasing over the last decades, which have a substantial impact on air quality, human health, the environment, and climate systems. Smoke aerosols can be transported over large distances, acting as pollutants that affect adjacent and distant downwind communities and environments. Fire emissions are a complicated mixture of trace gases and aerosols, many of which are short‐lived and chemically reactive, and this mixture affects atmospheric composition in complex ways that are not completely understood. We present a review of the current state of knowledge of smoke aerosol emissions originating from wildfires. Satellite observations, from both passive and active instruments, are critical to providing the ability to view the large‐scale influence of fire, smoke, and their impacts. Progress in the development of fire emission estimates to regional and global chemical transport models has advanced, although significant challenges remain, such as connecting ecosystems and fuels burned with dependent atmospheric chemistry. Knowledge of the impact of smoke on radiation, clouds, and precipitation has progressed and is an essential topical research area. However, current measurements and parameterizations are not adequate to describe the impacts on clouds of smoke particles (e.g., CNN, INP) from fire emissions in the range of representative environmental conditions necessary to advance science or modeling. We conclude by providing recommendations to the community that we believe will advance the science and understanding of the impact of fire smoke emissions on human and environmental health, as well as feedback with climate systems.

     
    more » « less
  3. Abstract. Smoke from wildfires is a significant source of air pollution, which can adversely impact air quality and ecosystems downwind. With the recently increasing intensity and severity of wildfires, the threat to air quality is expected to increase. Satellite-derived biomass burning emissions can fill in gaps in the absence of aircraft or ground-based measurement campaigns and can help improve the online calculation of biomass burning emissions as well as the biomass burning emissions inventories that feed air quality models. This study focuses on satellite-derived NOx emissions using the high-spatial-resolution TROPOspheric Monitoring Instrument (TROPOMI) NO2 dataset. Advancements and improvements to the satellite-based determination of forest fire NOx emissions are discussed, including information on plume height and effects of aerosol scattering and absorption on the satellite-retrieved vertical column densities. Two common top-down emission estimation methods, (1) an exponentially modified Gaussian (EMG) and (2) a flux method, are applied to synthetic data to determine the accuracy and the sensitivity to different parameters, including wind fields, satellite sampling, noise, lifetime, and plume spread. These tests show that emissions can be accurately estimated from single TROPOMI overpasses.The effect of smoke aerosols on TROPOMI NO2 columns (via air mass factors, AMFs) is estimated, and these satellite columns and emission estimates are compared to aircraft observations from four different aircraft campaigns measuring biomass burning plumes in 2018 and 2019 in North America. Our results indicate that applying an explicit aerosol correction to the TROPOMI NO2 columns improves the agreement with the aircraft observations (by about 10 %–25 %). The aircraft- and satellite-derived emissions are in good agreement within the uncertainties. Both top-down emissions methods work well; however, the EMG method seems to output more consistent results and has better agreement with the aircraft-derived emissions. Assuming a Gaussian plume shape for various biomass burning plumes, we estimate an average NOx e-folding time of 2 ±1 h from TROPOMI observations. Based on chemistry transport model simulations and aircraft observations, the net emissions of NOx are 1.3 to 1.5 times greater than the satellite-derived NO2 emissions. A correction factor of 1.3 to 1.5 should thus be used to infer net NOx emissions from the satellite retrievals of NO2. 
    more » « less
  4. Abstract. Wildfire smoke is one of the most significant concerns ofhuman and environmental health, associated with its substantial impacts onair quality, weather, and climate. However, biomass burning emissions andsmoke remain among the largest sources of uncertainties in air qualityforecasts. In this study, we evaluate the smoke emissions and plumeforecasts from 12 state-of-the-art air quality forecasting systemsduring the Williams Flats fire in Washington State, US, August 2019, whichwas intensively observed during the Fire Influence on Regional to GlobalEnvironments and Air Quality (FIREX-AQ) field campaign. Model forecasts withlead times within 1 d are intercompared under the same framework basedon observations from multiple platforms to reveal their performanceregarding fire emissions, aerosol optical depth (AOD), surface PM2.5,plume injection, and surface PM2.5 to AOD ratio. The comparison ofsmoke organic carbon (OC) emissions suggests a large range of daily totalsamong the models, with a factor of 20 to 50. Limited representations of thediurnal patterns and day-to-day variations of emissions highlight the needto incorporate new methodologies to predict the temporal evolution andreduce uncertainty of smoke emission estimates. The evaluation of smoke AOD(sAOD) forecasts suggests overall underpredictions in both the magnitude andsmoke plume area for nearly all models, although the high-resolution modelshave a better representation of the fine-scale structures of smoke plumes.The models driven by fire radiativepower (FRP)-based fire emissions or assimilating satellite AODdata generally outperform the others. Additionally, limitations of thepersistence assumption used when predicting smoke emissions are revealed bysubstantial underpredictions of sAOD on 8 August 2019, mainly over thetransported smoke plumes, owing to the underestimated emissions on7 August. In contrast, the surface smoke PM2.5 (sPM2.5) forecastsshow both positive and negative overall biases for these models, with mostmembers presenting more considerable diurnal variations of sPM2.5.Overpredictions of sPM2.5 are found for the models driven by FRP-basedemissions during nighttime, suggesting the necessity to improve verticalemission allocation within and above the planetary boundary layer (PBL).Smoke injection heights are further evaluated using the NASA LangleyResearch Center's Differential Absorption High Spectral Resolution Lidar(DIAL-HSRL) data collected during the flight observations. As the firebecame stronger over 3–8 August, the plume height became deeper, with aday-to-day range of about 2–9 km a.g.l. However, narrower ranges arefound for all models, with a tendency of overpredicting the plume heights forthe shallower injection transects and underpredicting for the days showingdeeper injections. The misrepresented plume injection heights lead toinaccurate vertical plume allocations along the transects corresponding totransported smoke that is 1 d old. Discrepancies in model performance forsurface PM2.5 and AOD are further suggested by the evaluation of theirratio, which cannot be compensated for by solely adjusting the smoke emissionsbut are more attributable to model representations of plume injections,besides other possible factors including the evolution of PBL depths andaerosol optical property assumptions. By consolidating multiple forecastsystems, these results provide strategic insight on pathways to improvesmoke forecasts. 
    more » « less
  5. Current forest monitoring technologies including satellite remote sensing, manned/piloted aircraft, and observation towers leave uncertainties about a wildfire’s extent, behavior, and conditions in the fire’s near environment, particularly during its early growth. Rapid mapping and real-time fire monitoring can inform in-time intervention or management solutions to maximize beneficial fire outcomes. Drone systems’ unique features of 3D mobility, low flight altitude, and fast and easy deployment make them a valuable tool for early detection and assessment of wildland fires, especially in remote forests that are not easily accessible by ground vehicles. In addition, the lack of abundant, well-annotated aerial datasets – in part due to unmanned aerial vehicles’ (UAVs’) flight restrictions during prescribed burns and wildfires – has limited research advances in reliable data-driven fire detection and modeling techniques. While existing wildland fire datasets often include either color or thermal fire images, here we present (1) a multi-modal UAV-collected dataset of dual-feed side-by-side videos including both RGB and thermal images of a prescribed fire in an open canopy pine forest in Northern Arizona and (2) a deep learning-based methodology for detecting fire and smoke pixels at accuracy much higher than the usual single-channel video feeds. The collected images are labeled to “fire” or “no-fire” frames by two human experts using side-by-side RGB and thermal images to determine the label. To provide context to the main dataset’s aerial imagery, the included supplementary dataset provides a georeferenced pre-burn point cloud, an RGB orthomosaic, weather information, a burn plan, and other burn information. By using and expanding on this guide dataset, research can develop new data-driven fire detection, fire segmentation, and fire modeling techniques. 
    more » « less