skip to main content


This content will become publicly available on September 8, 2024

Title: Role of sesquiterpenes in biogenic new particle formation

Biogenic vapors form new particles in the atmosphere, affecting global climate. The contributions of monoterpenes and isoprene to new particle formation (NPF) have been extensively studied. However, sesquiterpenes have received little attention despite a potentially important role due to their high molecular weight. Via chamber experiments performed under atmospheric conditions, we report biogenic NPF resulting from the oxidation of pure mixtures of β-caryophyllene, α-pinene, and isoprene, which produces oxygenated compounds over a wide range of volatilities. We find that a class of vapors termed ultralow-volatility organic compounds (ULVOCs) are highly efficient nucleators and quantitatively determine NPF efficiency. When compared with a mixture of isoprene and monoterpene alone, adding only 2% sesquiterpene increases the ULVOC yield and doubles the formation rate. Thus, sesquiterpene emissions need to be included in assessments of global aerosol concentrations in pristine climates where biogenic NPF is expected to be a major source of cloud condensation nuclei.

 
more » « less
Award ID(s):
2215489
NSF-PAR ID:
10484252
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Science
Date Published:
Journal Name:
Science Advances
Volume:
9
Issue:
36
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Biogenic organic precursors play an important role inatmospheric new particle formation (NPF). One of the major precursor speciesis α-pinene, which upon oxidation can form a suite of productscovering a wide range of volatilities. Highly oxygenated organic molecules(HOMs) comprise a fraction of the oxidation products formed. While it isknown that HOMs contribute to secondary organic aerosol (SOA) formation,including NPF, they have not been well studied in newly formed particles dueto their very low mass concentrations. Here we present gas- and particle-phase chemical composition data from experimental studies of α-pinene oxidation, including in the presence of isoprene, at temperatures(−50 and −30 ∘C) and relativehumidities (20 % and 60 %) relevant in the upper free troposphere. Themeasurements took place at the CERN Cosmics Leaving Outdoor Droplets (CLOUD)chamber. The particle chemical composition was analyzed by a thermaldesorption differential mobility analyzer (TD-DMA) coupled to a nitratechemical ionization–atmospheric pressure interface–time-of-flight(CI-APi-TOF) mass spectrometer. CI-APi-TOF was used for particle- and gas-phase measurements, applying the same ionization and detection scheme. Ourmeasurements revealed the presence of C8−10 monomers and C18−20dimers as the major compounds in the particles (diameter up to∼ 100 nm). Particularly, for the system with isoprene added,C5 (C5H10O5−7) and C15 compounds(C15H24O5−10) were detected. This observation is consistentwith the previously observed formation of such compounds in the gas phase. However, although the C5 and C15 compounds do not easily nucleate,our measurements indicate that they can still contribute to the particlegrowth at free tropospheric conditions. For the experiments reported here,most likely isoprene oxidation products enhance the growth of particleslarger than 15 nm. Additionally, we report on the nucleation rates measuredat 1.7 nm (J1.7 nm) and compared with previous studies, we found lowerJ1.7 nm values, very likely due to the higher α-pinene andozone mixing ratios used in the present study. 
    more » « less
  2. Abstract

    New particle formation (NPF) has been observed at various locations, but NPF does not occur in isoprene‐dominant forests. Recent laboratory studies were conducted to understand the role of isoprene in biogenic NPF, and these studies show that isoprene can suppress biogenic NPF, with contradicting theories. To reconcile these discrepancies, we conducted flow tube experiments of biogenic nucleation under a wide range of isoprene over monoterpene carbon ratios (R) and oxidant conditions (OH vs. ozone). Our results show isoprene either suppresses or enhances biogenic NPF, depending onRand oxidation regimes, demonstrating the synergetic effects of isoprene and HOx(OH and HO2) on biogenic NPF. Whereas the suppression of NPF by isoprene is due to the product suppression effects of monoterpene dimers (C20), RO2 + HO2termination reactions also play important roles in suppressing the dimer formation, another likely process to suppress NPF in the atmosphere.

     
    more » « less
  3. Biogenic volatile organic compounds (BVOCs) contribute the majority of reactive organic carbon to the atmosphere and lead to aerosol formation through reaction with atmospheric oxidants including ozone and hydroxyl radicals. One class of BVOCs, sesquiterpenes, have a high reactivity with ozone but exist at lower concentrations compared to other BVOCs, and there are relatively few measurements of their concentrations in different environments or their importance in the atmospheric oxidant budget. To help close this knowledge gap, we examine concentrations of isomer-resolved sesquiterpene concentrations collected hourly at two sites in Virginia that are representative of different ecosystems in the southeastern US. Sesquiterpene concentrations are presented and discussed in relation to their diurnal patterns and used to estimate their contribution to reactivity with common gas-phase oxidants. Twenty-four sesquiterpenes were identified at the sites, eleven of which were observed at both sites. Total sesquiterpene concentrations were found to range between 0.8 and 2 ppt with no single isomer dominating throughout. Hydroxyl activity is similarly diverse, with no particular isomer dominating activity at either site. Ozone reactivity, however, was found to be dominated (∼3/4 total reactivity) by β-caryophyllene and humulene despite these compounds representing roughly only 10% of total sesquiterpene mass, highlighting their importance as the major driver of sesquiterpene-ozone reactivity. Average reaction rate constants for sesquiterpenes with ozone and hydroxyl radicals were calculated for both sites as a method to simplify future atmospheric modelling concerning sesquiterpenes. This work provides broad insight into the composition and impacts of sesquiterpenes, suggesting that sesquiterpene composition is relatively similar between sites. Furthermore, while the calculated average sesquiterpene-ozone reaction rate constants are at least an order of magnitude higher than that of more prevalent BVOC classes (isoprene and monoterpenes), their low concentrations suggest their impacts on atmospheric reactivity are expected to be limited to periods of high emissions. 
    more » « less
  4. Abstract

    Aerosol particles are important for our global climate, but the mechanisms and especially the relative importance of various vapors for new particles formation (NPF) remain uncertain. Quantum chemical (QC) studies on organic enhanced nucleation has for the past couple of decades attracted immense attention, but very little remains known about the exact organic compounds that potentially are important for NPF. Here we comprehensively review the QC literature on atmospheric cluster formation involving organic compounds. We outline the potential cluster systems that should be further investigated. Cluster formation involving complex multi‐functional organic accretion products warrant further investigations, but such systems are out of reach with currently applied methodologies. We suggest a “cluster of functional groups” approach to address this issue, which will allow for the identification of the potential structure of organic compounds that are involved in atmospheric NPF.

    This article is categorized under:

    Theoretical and Physical Chemistry > Reaction Dynamics and Kinetics

    Software > Quantum Chemistry

    Theoretical and Physical Chemistry > Thermochemistry

    Molecular and Statistical Mechanics > Molecular Interactions

     
    more » « less
  5. Abstract

    Biogenic volatile organic compounds (BVOCs) play important roles at cellular, foliar, ecosystem and atmospheric levels. The Amazonian rainforest represents one of the major global sources of BVOCs, so its study is essential for understanding BVOC dynamics. It also provides insights into the role of such large and biodiverse forest ecosystem in regional and global atmospheric chemistry and climate. We review the current information on Amazonian BVOCs and identify future research priorities exploring biogenic emissions and drivers, ecological interactions, atmospheric impacts, depositional processes and modifications to BVOC dynamics due to changes in climate and land cover. A feedback loop between Amazonian BVOCs and the trends of climate and land‐use changes in Amazonia is then constructed. Satellite observations and model simulation time series demonstrate the validity of the proposed loop showing a combined effect of climate change and deforestation on BVOC emission in Amazonia. A decreasing trend of isoprene during the wet season, most likely due to forest biomass loss, and an increasing trend of the sesquiterpene to isoprene ratio during the dry season suggest increasing temperature stress‐induced emissions due to climate change.

     
    more » « less