skip to main content


Title: Hawaiian Volcanic Ash, an Airborne Fomite for Nontuberculous Mycobacteria
Abstract

Nontuberculous mycobacteria (NTM) are environmentally acquired opportunistic pathogens that can cause chronic lung disease. Within the U.S., Hawai'i shows the highest prevalence rates of NTM lung infections. Here, we investigated a potential role for active volcanism at the Kīlauea Volcano located on Hawai'i Island in promoting NTM growth and diversity. We recovered NTM that are known to cause lung disease from plumbing biofilms and soils collected from the Kīlauea environment. We also discovered viableMycobacterium avium, Mycobacterium abscessus, andMycobacterium intracellularesubsp.chimaeraon volcanic ash collected during the 2018 Kīlauea eruption. Analysis of soil samples showed that NTM prevalence is positively associated with bulk content of phosphorus, sulfur, and total organic carbon. In growth assays, we showed that phosphorus utilization is essential for proliferation of Kīlauea‐derived NTM, and demonstrate that NTM cultured with volcanic ash adhere to ash surfaces and remain viable. Ambient dust collected on O'ahu concurrent with the 2018 eruption contained abundant fresh volcanic glass, suggestive of inter‐island ash transport. Phylogenomic analyses using whole genome sequencing revealed that Kīlauea‐derived NTM are genetically similar to respiratory isolates identified on other Hawaiian Islands. Consequently, we posit that volcanic eruptions could redistribute environmental microorganisms over large scales. While additional studies are needed to confirm a direct role of ash in NTM dispersal, our results suggest that volcanic particulates harbor and can redistribute NTM and should therefore be studied as a fomite for these burgeoning, environmentally acquired respiratory infections.

 
more » « less
NSF-PAR ID:
10484294
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
GeoHealth
Volume:
8
Issue:
1
ISSN:
2471-1403
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Alexandre, Gladys (Ed.)
    ABSTRACT Environmental nontuberculous mycobacteria (NTM), with the potential to cause opportunistic lung infections, can reside in soil. This might be particularly relevant in Hawai’i, a geographic hot spot for NTM infections and whose soil composition differs from many other areas of the world. Soil components are likely to contribute to NTM prevalence in certain niches as food sources or attachment scaffolds, but the particular types of soils, clays, and minerals that impact NTM growth are not well-defined. Hawai’i soil and chemically weathered rock (saprolite) samples were examined to characterize the microbiome and quantify 11 mineralogical features as well as soil pH. Machine learning methods were applied to identify important soil features influencing the presence of NTM. Next, these features were directly tested in vitro by incubating synthetic clays and minerals in the presence of Mycobacteroides abscessus and Mycobacterium chimaera isolates recovered from the Hawai'i environment, and changes in bacterial growth were determined. Of the components examined, synthetic gibbsite, a mineral form of aluminum hydroxide, inhibited the growth of both M. abscessus and M. chimaera , while other minerals tested showed differential effects on each species. For example, M. abscessus (but not M. chimaera ) growth was significantly higher in the presence of hematite, an iron oxide mineral. In contrast, M. chimaera (but not M. abscessus ) counts were significantly reduced in the presence of birnessite, a manganese-containing mineral. These studies shed new light on the mineralogic features that promote or inhibit the presence of Hawai’i NTM in Hawai’i soil. IMPORTANCE Globally and in the United States, the prevalence of NTM pulmonary disease—a potentially life-threatening but underdiagnosed chronic illness—is prominently rising. While NTM are ubiquitous in the environment, including in soil, the specific soil components that promote or inhibit NTM growth have not been elucidated. We hypothesized that NTM culture-positive soil contains minerals that promote NTM growth in vitro . Because Hawai’i is a hot spot for NTM and a unique geographic archipelago, we examined the composition of Hawai’i soil and identified individual clay, iron, and manganese minerals associated with NTM. Next, individual components were evaluated for their ability to directly modulate NTM growth in culture. In general, gibbsite and some manganese oxides were shown to decrease NTM, whereas iron-containing minerals were associated with higher NTM counts. These data provide new information to guide future analyses of soil-associated factors impacting persistence of these soil bacteria. 
    more » « less
  2. Semrau, Jeremy D. (Ed.)
    ABSTRACT Nontuberculous mycobacteria (NTM) are opportunistic pathogens that cause chronic pulmonary disease (PD). NTM infections are thought to be acquired from the environment; however, the basal environmental factors that drive and sustain NTM prevalence are not well understood. The highest prevalence of NTM PD cases in the United States is reported from Hawai’i, which is unique in its climate and soil composition, providing an opportunity to investigate the environmental drivers of NTM prevalence. We used microbiological sampling and spatial logistic regression complemented with fine-scale soil mineralogy to model the probability of NTM presence across the natural landscape of Hawai’i. Over 7 years, we collected and microbiologically cultured 771 samples from 422 geographic sites in natural areas across the Hawaiian Islands for the presence of NTM. NTM were detected in 210 of these samples (27%), with Mycobacterium abscessus being the most frequently isolated species. The probability of NTM presence was highest in expansive soils (those that swell with water) with a high water balance (>1-m difference between rainfall and evapotranspiration) and rich in Fe-oxides/hydroxides. We observed a positive association between NTM presence and iron in wet soils, supporting past studies, but no such association in dry soils. High soil-water balance may facilitate underground movement of NTM into the aquifer system, potentially compounded by expansive capabilities allowing crack formation under drought conditions, representing further possible avenues for aquifer infiltration. These results suggest both precipitation and soil properties are mechanisms by which surface NTM may reach the human water supply. IMPORTANCE Nontuberculous mycobacteria (NTM) are ubiquitous in the environment, being found commonly in soils and natural bodies of freshwater. However, little is known about the environmental niches of NTM and how they relate to NTM prevalence in homes and other human-dominated areas. To characterize NTM environmental associations, we collected and cultured 771 samples from 422 geographic sites in natural areas across Hawai’i, the U.S. state with the highest prevalence of NTM pulmonary disease. We show that the environmental niches of NTM are most associated with highly expansive, moist soils containing high levels of iron oxides/hydroxides. Understanding the factors associated with NTM presence in the natural environment will be crucial for identifying potential mechanisms and risk factors associated with NTM infiltration into water supplies, which are ultimately piped into homes where most exposure risk is thought to occur. 
    more » « less
  3. As environmental opportunistic pathogens, nontuberculous mycobacteria (NTM) can cause severe and difficult to treat pulmonary disease. In the United States, Hawai’i has the highest prevalence of infection. Rapid growing mycobacteria (RGM) such asMycobacterium abscessusandM. porcinumand the slow growing mycobacteria (SGM) includingM. intracellularesubspecieschimaeraare common environmental NTM species and subspecies in Hawai’i. Although iron acquisition is an essential process of many microorganisms, iron acquisition via siderophores among the NTM is not well-characterized. In this study, we apply genomic and microbiological methodologies to better understand iron acquisition via siderophores for environmental and respiratory isolates ofM. abscessus,M. porcinum, andM. intracellularesubspecieschimaerafrom Hawai’i. Siderophore synthesis and transport genes, including mycobactin(mbt), mmpL/S, andesx-3were compared among 47 reference isolates, 29 respiratory isolates, and 23 environmental Hawai’i isolates. Among all reference isolates examined, respiratory isolates showed significantly more siderophore pertinent genes compared to environmental isolates. Among the Hawai’i isolates, RGMM. abscessusandM. porcinumhad significantly lessesx-3 andmbtgenes compared to SGMM. chimaerawhen stratified by growth classification. However, no significant differences were observed between the species when grown on low iron culture agar or siderophore production by the chrome azurol S (CAS) assayin vitro. These results indicate the complex mechanisms involved in iron sequestration and siderophore activity among diverse NTM species.

     
    more » « less
  4. ABSTRACT Bacteria within the genus Mycobacterium can be abundant in showerheads, and the inhalation of aerosolized mycobacteria while showering has been implicated as a mode of transmission in nontuberculous mycobacterial (NTM) lung infections. Despite their importance, the diversity, distributions, and environmental predictors of showerhead-associated mycobacteria remain largely unresolved. To address these knowledge gaps, we worked with citizen scientists to collect showerhead biofilm samples and associated water chemistry data from 656 households located across the United States and Europe. Our cultivation-independent analyses revealed that the genus Mycobacterium was consistently the most abundant genus of bacteria detected in residential showerheads, and yet mycobacterial diversity and abundances were highly variable. Mycobacteria were far more abundant, on average, in showerheads receiving municipal water than in those receiving well water and in U.S. households than in European households, patterns that are likely driven by differences in the use of chlorine disinfectants. Moreover, we found that water source, water chemistry, and household location also influenced the prevalence of specific mycobacterial lineages detected in showerheads. We identified geographic regions within the United States where showerheads have particularly high abundances of potentially pathogenic lineages of mycobacteria, and these “hot spots” generally overlapped those regions where NTM lung disease is most prevalent. Together, these results emphasize the public health relevance of mycobacteria in showerhead biofilms. They further demonstrate that mycobacterial distributions in showerhead biofilms are often predictable from household location and water chemistry, knowledge that advances our understanding of NTM transmission dynamics and the development of strategies to reduce exposures to these emerging pathogens. IMPORTANCE Bacteria thrive in showerheads and throughout household water distribution systems. While most of these bacteria are innocuous, some are potential pathogens, including members of the genus Mycobacterium that can cause nontuberculous mycobacterial (NTM) lung infection, an increasing threat to public health. We found that showerheads in households across the United States and Europe often harbor abundant mycobacterial communities that vary in composition depending on geographic location, water chemistry, and water source, with households receiving water treated with chlorine disinfectants having particularly high abundances of certain mycobacteria. The regions in the United States where NTM lung infections are most common were the same regions where pathogenic mycobacteria were most prevalent in showerheads, highlighting the important role of showerheads in the transmission of NTM infections. 
    more » « less
  5. 1. Primary succession after a volcanic eruption is a major ecological process, but relatively little is known about insects that colonise barren lava before plants become established.

    2. On Hawai'i Island, the endemic cricket,Caconemobius foriGurney & Rentz, 1978, is known as the first multicellular life form to colonise lava after an eruption from Kīlauea Volcano. In the Kona region, a congener,Caconemobius anahuluOtte, 1994 inhabits unvegetated lava flows from Hualālai Volcano, but little has been documented about its distribution.

    3. Our aim was to characterise the presence/absence ofCaconemobiusspp.across lava flows that are largely unvegetated, but differ in age since eruption and connectivity to older flows. We used baited live traps to survey 9 month–50 year‐old Kīlauea lava flows forC. fori, and ∼220 year‐old Hualālai lava flows forC. anahulu.

    4. We found no evidence thatC. forihas colonised the Kīlauea flows from the 2018 eruption. However, we did discover thatC. foriwas persistent and widespread on Kīlauea lava up to 50 years old within Hawai'i Volcanos National Park. We also capturedC. anahuluacross much of the Hualālai lava flows we surveyed in Kona.

    5. We demonstrated thatC. forido not always arrive on new lava within months after an eruption, in contrast to previous reports, and that bothC. foriandC. anahulucan remain on lava longer than previously appreciated. Vegetation successional state may be more important than true age for the persistence of these endemic crickets.

     
    more » « less