A long line of work in the past two decades or so established close connections between several different pseudorandom objects and applications, including seeded or seedless non-malleable extractors, two source extractors, (bipartite) Ramsey graphs, privacy amplification protocols with an active adversary, non-malleable codes and many more. These connections essentially show that an asymptotically optimal construction of one central object will lead to asymptotically optimal solutions to all the others. However, despite considerable effort, previous works can get close but still lack one final step to achieve truly asymptotically optimal constructions. In this paper we provide the last missing link, thus simultaneously achieving explicit, asymptotically optimal constructions and solutions for various well studied extractors and applications, that have been the subjects of long lines of research. Our results include: 1. Asymptotically optimal seeded non-malleable extractors, which in turn give two source extractors for asymptotically optimal min-entropy of $$O(\log n)$$, explicit constructions of $$K$$-Ramsey graphs on $$N$$ vertices with $$K=\log^{O(1)} N$$, and truly optimal privacy amplification protocols with an active adversary. 2. Two source non-malleable extractors and affine non-malleable extractors for some linear min-entropy with exponentially small error, which in turn give the first explicit construction of non-malleable codes against $$2$$-split state tampering and affine tampering with constant rate and \emph{exponentially} small error. 3. Explicit extractors for affine sources, sumset sources, interleaved sources, and small space sources that achieve asymptotically optimal min-entropy of $$O(\log n)$ or $$2s+O(\log n)$$ (for space $$s$$ sources). 4. An explicit function that requires strongly linear read once branching programs of size $$2^{n-O(\log n)}$$, which is optimal up to the constant in $$O(\cdot)$$. Previously, even for standard read once branching programs, the best known size lower bound for an explicit function is $$2^{n-O(\log^2 n)}$$. 
                        more » 
                        « less   
                    
                            
                            Extractors for Images of Varieties
                        
                    
    
            We construct explicit deterministic extractors for polynomial images of varieties, that is, distributions sampled by applying a low-degree polynomial map 𝑓 to an element sampled uniformly at random from a 𝑘-dimensional variety 𝑉. This class of sources generalizes both polynomial sources, studied by Dvir, Gabizon and Wigderson (FOCS 2007, Comput. Complex. 2009), and variety sources, studied by Dvir (CCC 2009, Comput. Complex. 2012). Assuming certain natural non-degeneracy conditions on the map 𝑓 and the variety 𝑉 , which in particular ensure that the source has enough min-entropy, we extract almost all the min-entropy of the distribution. Unlike the Dvir–Gabizon–Wigderson and Dvir results, our construction works over large enough finite fields of arbitrary characteristic. One key part of our construction is an improved deterministic rank extractor for varieties. As a by-product, we obtain explicit Noether normalization lemmas for affine varieties and affine algebras. Additionally, we generalize a construction of affine extractors with exponentially small error due to Bourgain, Dvir and Leeman (Comput. Complex. 2016) by extending it to all finite prime fields of quasipolynomial size. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10484417
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- Conference proceedings of the annual ACM Symposium on Theory of Computing
- ISSN:
- 0734-9025
- ISBN:
- 9781450399135
- Page Range / eLocation ID:
- 46 to 59
- Format(s):
- Medium: X
- Location:
- Orlando FL USA
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Guruswami, Venkatesan (Ed.)We explicitly construct the first nontrivial extractors for degree d ≥ 2 polynomial sources over 𝔽₂. Our extractor requires min-entropy k ≥ n - (√{log n})/((log log n / d)^{d/2}). Previously, no constructions were known, even for min-entropy k ≥ n-1. A key ingredient in our construction is an input reduction lemma, which allows us to assume that any polynomial source with min-entropy k can be generated by O(k) uniformly random bits. We also provide strong formal evidence that polynomial sources are unusually challenging to extract from, by showing that even our most powerful general purpose extractors cannot handle polynomial sources with min-entropy below k ≥ n-o(n). In more detail, we show that sumset extractors cannot even disperse from degree 2 polynomial sources with min-entropy k ≥ n-O(n/log log n). In fact, this impossibility result even holds for a more specialized family of sources that we introduce, called polynomial non-oblivious bit-fixing (NOBF) sources. Polynomial NOBF sources are a natural new family of algebraic sources that lie at the intersection of polynomial and variety sources, and thus our impossibility result applies to both of these classical settings. This is especially surprising, since we do have variety extractors that slightly beat this barrier - implying that sumset extractors are not a panacea in the world of seedless extraction.more » « less
- 
            Ta-Shma, Amnon (Ed.)In a recent work, Gryaznov, Pudlák and Talebanfard (CCC '22) introduced a linear variant of read-once branching programs, with motivations from circuit and proof complexity. Such a read-once linear branching program is a branching program where each node is allowed to make 𝔽₂-linear queries, and is read-once in the sense that the queries on each path is linearly independent. As their main result, they constructed an explicit function with average-case complexity 2^{n/3-o(n)} against a slightly restricted model, which they call strongly read-once linear branching programs. The main tool in their lower bound result is a new type of extractor, called directional affine extractors, that they introduced. Our main result is an explicit function with 2^{n-o(n)} average-case complexity against the strongly read-once linear branching program model, which is almost optimal. This result is based on a new connection from this problem to sumset extractors, which is a randomness extractor model introduced by Chattopadhyay and Li (STOC '16) as a generalization of many other well-studied models including two-source extractors, affine extractors and small-space extractors. With this new connection, our lower bound naturally follows from a recent construction of sumset extractors by Chattopadhyay and Liao (STOC '22). In addition, we show that directional affine extractors imply sumset extractors in a restricted setting. We observe that such restricted sumset sources are enough to derive lower bounds, and obtain an arguably more modular proof of the lower bound by Gryaznov, Pudlák and Talebanfard. We also initiate a study of pseudorandomness against linear branching programs. Our main result here is a hitting set generator construction against regular linear branching programs with constant width. We derive this result based on a connection to Kakeya sets over finite fields.more » « less
- 
            Santhanam, Rahul (Ed.)Affine extractors give some of the best-known lower bounds for various computational models, such as AC⁰ circuits, parity decision trees, and general Boolean circuits. However, they are not known to give strong lower bounds for read-once branching programs (ROBPs). In a recent work, Gryaznov, Pudlák, and Talebanfard (CCC' 22) introduced a stronger version of affine extractors known as directional affine extractors, together with a generalization of ROBPs where each node can make linear queries, and showed that the former implies strong lower bound for a certain type of the latter known as strongly read-once linear branching programs (SROLBPs). Their main result gives explicit constructions of directional affine extractors for entropy k > 2n/3, which implies average-case complexity 2^{n/3-o(n)} against SROLBPs with exponentially small correlation. A follow-up work by Chattopadhyay and Liao (CCC' 23) improves the hardness to 2^{n-o(n)} at the price of increasing the correlation to polynomially large, via a new connection to sumset extractors introduced by Chattopadhyay and Li (STOC' 16) and explicit constructions of such extractors by Chattopadhyay and Liao (STOC' 22). Both works left open the questions of better constructions of directional affine extractors and improved average-case complexity against SROLBPs in the regime of small correlation. This paper provides a much more in-depth study of directional affine extractors, SROLBPs, and ROBPs. Our main results include: - An explicit construction of directional affine extractors with k = o(n) and exponentially small error, which gives average-case complexity 2^{n-o(n)} against SROLBPs with exponentially small correlation, thus answering the two open questions raised in previous works. - An explicit function in AC⁰ that gives average-case complexity 2^{(1-δ)n} against ROBPs with negligible correlation, for any constant δ > 0. Previously, no such average-case hardness is known, and the best size lower bound for any function in AC⁰ against ROBPs is 2^Ω(n). One of the key ingredients in our constructions is a new linear somewhere condenser for affine sources, which is based on dimension expanders. The condenser also leads to an unconditional improvement of the entropy requirement of explicit affine extractors with negligible error. We further show that the condenser also works for general weak random sources, under the Polynomial Freiman-Ruzsa Theorem in 𝖥₂ⁿ, recently proved by Gowers, Green, Manners, and Tao (arXiv' 23).more » « less
- 
            Bojanczyk, Mikolaj; Merelli, Emanuela; Woodruff, David P. (Ed.)We continue a line of work on extracting random bits from weak sources that are generated by simple processes. We focus on the model of locally samplable sources, where each bit in the source depends on a small number of (hidden) uniformly random input bits. Also known as local sources, this model was introduced by De and Watson (TOCT 2012) and Viola (SICOMP 2014), and is closely related to sources generated by AC⁰ circuits and bounded-width branching programs. In particular, extractors for local sources also work for sources generated by these classical computational models. Despite being introduced a decade ago, little progress has been made on improving the entropy requirement for extracting from local sources. The current best explicit extractors require entropy n^{1/2}, and follow via a reduction to affine extractors. To start, we prove a barrier showing that one cannot hope to improve this entropy requirement via a black-box reduction of this form. In particular, new techniques are needed. In our main result, we seek to answer whether low-degree polynomials (over 𝔽₂) hold potential for breaking this barrier. We answer this question in the positive, and fully characterize the power of low-degree polynomials as extractors for local sources. More precisely, we show that a random degree r polynomial is a low-error extractor for n-bit local sources with min-entropy Ω(r(nlog n)^{1/r}), and we show that this is tight. Our result leverages several new ingredients, which may be of independent interest. Our existential result relies on a new reduction from local sources to a more structured family, known as local non-oblivious bit-fixing sources. To show its tightness, we prove a "local version" of a structural result by Cohen and Tal (RANDOM 2015), which relies on a new "low-weight" Chevalley-Warning theorem.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    