Abstract Premature transcription termination (i.e. attenuation) is a potent gene regulatory mechanism that represses mRNA synthesis. Attenuation of RNA polymerase II is more prevalent than once appreciated, targeting 10–15% of mRNA genes in yeast through higher eukaryotes, but its significance and mechanism remain obscure. In the yeast Saccharomyces cerevisiae, polymerase II attenuation was initially shown to rely on Nrd1–Nab3–Sen1 termination, but more recently our laboratory characterized a hybrid termination pathway involving Hrp1, an RNA-binding protein in the 3′-end cleavage factor. One of the hybrid attenuation gene targets is DEF1, which encodes a repair protein that promotes degradation of polymerase II stalled at DNA lesions. In this study, we characterized the chromosomal DEF1 attenuator and the functional role of Hrp1. DEF1 attenuator mutants overexpressed Def1 mRNA and protein, exacerbated polymerase II degradation, and hindered cell growth, supporting a biologically significant DEF1 attenuator function. Using an auxin-induced Hrp1 depletion system, we identified new Hrp1-dependent attenuators in MNR2, SNG1, and RAD3 genes. An hrp1-5 mutant (L205S) known to impair binding to cleavage factor protein Rna14 also disrupted attenuation, but surprisingly no widespread defect was observed for an hrp1-1 mutant (K160E) located in the RNA-recognition motif. We designed a new RNA recognition motif mutant (hrp1-F162W) that altered a highly conserved residue and was lethal in single copy. In a heterozygous strain, hrp1-F162W exhibited dominant-negative readthrough defects at several gene attenuators. Overall, our results expand the hybrid RNA polymerase II termination pathway, confirming that Hrp1-dependent attenuation controls multiple yeast genes and may function through binding cleavage factor proteins and/or RNA. 
                        more » 
                        « less   
                    
                            
                            Mutations in yeast Pcf11, a conserved protein essential for mRNA 3′ end processing and transcription termination, elicit the Environmental Stress Response
                        
                    
    
            Abstract The Pcf11 protein is an essential subunit of the large complex that cleaves and polyadenylates eukaryotic mRNA precursor. It has also been functionally linked to gene-looping, termination of RNA Polymerase II (Pol II) transcripts, and mRNA export. We have examined a poorly characterized but conserved domain (amino acids 142–225) of the Saccharomyces cerevisiae  Pcf11 and found that while it is not needed for mRNA 3′ end processing or termination downstream of the poly(A) sites of protein-coding genes, its presence improves the interaction with Pol II and the use of transcription terminators near gene promoters. Analysis of genome-wide Pol II occupancy in cells with Pcf11 missing this region, as well as Pcf11 mutated in the Pol II CTD Interacting Domain, indicates that systematic changes in mRNA expression are mediated primarily at the level of transcription. Global expression analysis also shows that a general stress response, involving both activation and suppression of specific gene sets known to be regulated in response to a wide variety of stresses, is induced in the two pcf11 mutants, even though cells are grown in optimal conditions. The mutants also cause an unbalanced expression of cell wall-related genes that does not activate the Cell Wall Integrity pathway but is associated with strong caffeine sensitivity. Based on these findings, we propose that Pcf11 can modulate the expression level of specific functional groups of genes in ways that do not involve its well-characterized role in mRNA 3′ end processing. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2152496
- PAR ID:
- 10484461
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- GENETICS
- ISSN:
- 1943-2631
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            An integral part of plant immunity is transcription reprogramming by concerted action of specific transcription factors that activate or repress genes through recruitment or release of RNA polymerase II (Pol II). Pol II is assembled into Pol II holoenzyme at the promoters through association with a group of general transcription factors including transcription factor IIB (TFIIB) to activate transcription. Unlike other eukaryotic organisms, plants have a large family of TFIIB-related proteins with 15 members in Arabidopsis including several plant-specific TFIIB-related proteins (BRPs). Molecular genetic analysis has revealed important roles of some BRPs in plant reproductive processes. In this study, we report that Arabidopsis knockout mutants for BRP1, the founding member of the BRP protein family, were normal in growth and development, but were hypersusceptible to the bacterial pathogenPsuedomonas syringae. The enhanced susceptibility of thebrp1mutants was associated with reduced expression of salicylic acid (SA) biosynthetic geneISOCHORISMATE SYNTHASE 1(ICS1) and SA-responsivePATHOGENESIS-RELATED(PR) genes. Pathogen-induced SA accumulation was reduced in thebrp1mutants and exogenous SA rescued thebrp1mutants for resistance to the bacterial pathogen. In uninfected plants, BRP1 was primarily associated with the plastids but pathogen infection induced its accumulation in the nucleus. BRP1 acted as a transcription activator in plant cells and binded to the promoter ofICS1. These results collectively indicate that BRP1 is a functionally specialized transcription factor that increasingly accumulates in the nucleus in response to pathogen infection to promote defense gene expression.more » « less
- 
            Central to the development and survival of all organisms is the regulation of gene expression, which begins with the process of transcription catalyzed by RNA polymerases. During transcription of protein-coding genes, the general transcription factors (GTFs) work alongside RNA polymerase II (Pol II) to assemble the preinitiation complex at the transcription start site, open the promoter DNA, initiate synthesis of the nascent messenger RNA, transition to productive elongation, and ultimately terminate transcription. Through these different stages of transcription, Pol II is dynamically phosphorylated at the C-terminal tail of its largest subunit, serving as a control mechanism for Pol II elongation and a signaling/binding platform for co-transcriptional factors. The large number of core protein factors participating in the fundamental steps of transcription add dense layers of regulation that contribute to the complexity of temporal and spatial control of gene expression within any given cell type. The Pol II transcription system is highly conserved across different levels of eukaryotes; however, most of the information here will focus on the human Pol II system. This review walks through various stages of transcription, from preinitiation complex assembly to termination, highlighting the functions and mechanisms of the core machinery that participates in each stage.more » « less
- 
            SUMMARY Transcriptional condensates are clusters of transcription factors, coactivators, and RNA Pol II associated with high-level gene expression, yet how they assemble and function within the cell remains unclear. Here we show that transcriptional condensates form in a stepwise manner to enable both graded and three-dimensional (3D) gene control in the yeast heat shock response. Molecular dissection revealed a condensate cascade. First, the transcription factor Hsf1 clusters upon partial dissociation from the chaperone Hsp70. Next, the coactivator Mediator partitions following further Hsp70 dissociation and Hsf1 phosphorylation. Finally, Pol II condenses, driving the emergent coalescence of HSR genes. Molecular analysis of a series of Hsf1 mutants revealed graded, rather than switch-like, transcriptional activity. Separation-of-function mutants showed that condensate formation can be decoupled from gene activation. Instead, fully assembled HSR condensates promote adaptive 3D genome reconfiguration, suggesting a role of transcriptional condensates beyond gene activation.more » « less
- 
            Transcription is a step in gene expression that defines the identity of cells and its dysregulation is associated with diseases. With advancing technologies revealing molecular underpinnings of the cell with ever-higher precision, our ability to view the transcriptomes may have surpassed our knowledge of the principles behind their organization. The human RNA polymerase II (Pol II) machinery comprises thousands of components that, in conjunction with epigenetic and other mechanisms, drive specialized programs of development, differentiation, and responses to the environment. Parts of these programs are repurposed in oncogenic transformation. Targeting of cancers is commonly done by inhibiting general or broadly acting components of the cellular machinery. The critical unanswered question is how globally acting or general factors exert cell type specific effects on transcription. One solution, which is discussed here, may be among the events that take place at genes during early Pol II transcription elongation. This essay turns the spotlight on the well-known phenomenon of promoter-proximal Pol II pausing as a step that separates signals that establish pausing genome-wide from those that release the paused Pol II into the gene. Concepts generated in this rapidly developing field will enhance our understanding of basic principles behind transcriptome organization and hopefully translate into better therapies at the bedside.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
