skip to main content


Title: Large-area polycrystalline α-MoO 3 thin films for IR photonics
Abstract

In recent years, the excitation of surface phonon polaritons (SPhPs) in van der Waals materials received wide attention from the nanophotonics community. Alpha-phase Molybdenum trioxide (α-MoO3), a naturally occurring biaxial hyperbolic crystal, emerged as a promising polaritonic material due to its ability to support SPhPs for three orthogonal directions at different wavelength bands (range 10–20μm). Here, we report on the fabrication, structural, morphological, and optical IR characterization of large-area (over 1 cm2size)α-MoO3polycrystalline film deposited on fused silica substrates by pulsed laser deposition. Due to the random grain distribution, the thin film does not display any optical anisotropy at normal incidence. However, the proposed fabrication method allows us to achieve a singleα-phase, preserving the typical strong dispersion related to the phononic response ofα-MoO3flakes. Remarkable spectral properties of interest for IR photonics applications are reported. For instance, a polarization-tunable reflection peak at 1006 cm−1with a dynamic range of ΔR= 0.3 and a resonanceQ-factor as high as 53 is observed at 45° angle of incidence. Additionally, we report the fulfillment of an impedance matching condition with the SiO2substrate leading to a polarization-independent almost perfect absorption condition (R< 0.01) at 972 cm−1which is maintained for a broad angle of incidence. In this framework our findings appear extremely promising for the further development of mid-IR lithography-free, scalable films, for efficient and large-scale sensors, filters, thermal emitters, and label-free biochemical sensing devices operating in the free space, using far-field detection setups.

 
more » « less
NSF-PAR ID:
10484466
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Journal of Physics D: Applied Physics
Volume:
57
Issue:
13
ISSN:
0022-3727
Format(s):
Medium: X Size: Article No. 135107
Size(s):
["Article No. 135107"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Block copolymers (BCPs) have received significant attention as promising candidates for sequestering nanoparticles and fabrication of aligned nanostructures with optimal optical or electrical properties. We investigate the influence of static and dynamic thermal field on the alignment of polystyrene‐block‐poly(methyl methacrylate) (PS‐b‐PMMA) BCP morphology with the loading of novel poly(methyl methacrylate‐block‐Polystyrene) (PMMA‐b‐PS)‐grafted‐TiO2nanoparticles (BCP‐g‐TiO2). Observation of characteristics IR peaks for PMMA and PS in BCP‐g‐TiO2nanoparticles and Transmission Electron Microscopy (TEM) results of the outer coating of core nanoparticle, validate the grafting to approach in synthesizing BCP‐g‐TiO2. Here we report that under the sharp dynamic thermal field, at low loading of BCP‐g‐TiO2, there is good dispersion of nanoparticles in unidirectionally aligned BCP matrix in film interior probed by GISAXS, while, at high nanoparticle loading (~10 wt%), there is local frustration in the unidirectional alignment of the BCP matrix due to aggregation of BCP‐g‐TiO2nanoparticles. However, Grazing incidence small angle X‐ray scattering (GISAXS) shows clearly that the BCP films remain largely locally ordered at the domain scale, despite these large perturbations to long‐range ordering even at high loading level, while bringing in new TiO2functionality to the BCP films, such as UVO absorptivity or biofouling prevention, important to potential new applications of such membranes.

     
    more » « less
  2. Abstract

    Low‐symmetry van der Waals materials are promising candidates for the next generation of polarization‐sensitive on‐chip photonics since they do not require lattice matching for growth and integration. Due to their low‐symmetry crystal behavior, such materials exhibit anisotropic and polarization‐dependent optical properties for a wide range of optical frequencies. Here, depolarization characteristics of orthorhombic α‐MoO3is studied in the visible range. Using polarizers and analyzers, it is demonstrated that α‐MoO3has negligible loss and that birefringence values as high as 0.15 and 0.12 at 532 nm and 633 nm, respectively, are achievable. With such a high birefringence, quarter‐ and half‐wave plate actions are demonstrated for a 1400 nm α‐MoO3flake at green (532 nm) and red (633 nm) wavelengths, and polarizability as high as 90% is reported. Furthermore, a system of double α‐MoO3heterostructure layer is investigated that provides the possibility of tuning polarization as a function of rotation angle between the α‐MoO3layers. These findings pave the way to the promising future of on‐chip photonic heterostructures and twist‐optics that can dictate the polarization state of light.

     
    more » « less
  3. Copper oxide nanostructures are widely used for various applications due to their unique optical and electrical properties. In this work, we demonstrate an atmospheric laser-induced oxidation technique for the fabrication of highly electrochemically active copper oxide hierarchical micro/nano structures on copper surfaces to achieve highly sensitive non-enzymatic glucose sensing performance. The effect of laser processing power on the composition, crystallinity, microstructure, wettability, and color of the laser-induced oxide on copper (LIO-Cu) surface was systematically studied using scanning electron microscopy (SEM), grazing incidence X-ray diffraction (GI-XRD), Raman spectroscopy, energy dispersive X-ray spectroscopy (EDX), EDX-mapping, water contact angle measurements, and optical microscopy. Results of these investigations showed a remarkable increase in copper oxide composition by increasing the laser processing power. The pore size distribution and surface area of the pristine and LIO-Cu sample estimated by N 2 adsorption–desorption data showed a developed mesoporous LIO-Cu structure. The size of the generated nano-oxides, crystallinity, and electroactivity of the LIO-Cu were observed to be adjustable by the laser processing power. The electrocatalytic activity of LIO-Cu surfaces was studied by means of cyclic voltammetry (CV) within a potential window of −0.8 to +0.8 V and chronoamperometry in an applied optimized potential of +0.6 V, in 0.1 M NaOH solution and phosphate buffer solution (PBS), respectively. LIO-Cu surfaces with optimized laser processing powers exhibited a sensitivity of 6950 μA mM −1 cm −2 within a wide linear range from 0.01 to 5 mM, with exceptional specificity and response time (<3 seconds). The sensors also showed excellent response stability over a course of 50 days that was originated from the binder-free robust electroactive film fabricated directly onto the copper surface. The demonstrated one-step LIO processing onto commercial metal films, can potentially be applied for tuneable and scalable roll-to-roll fabrication of a wide range of high surface area metal oxide micro/nano structures for non-enzymatic biosensing and electrochemical applications. 
    more » « less
  4. Abstract

    Semiconducting transition metal dichalcogenides (TMDs) are promising for flexible high-specific-power photovoltaics due to their ultrahigh optical absorption coefficients, desirable band gaps and self-passivated surfaces. However, challenges such as Fermi-level pinning at the metal contact–TMD interface and the inapplicability of traditional doping schemes have prevented most TMD solar cells from exceeding 2% power conversion efficiency (PCE). In addition, fabrication on flexible substrates tends to contaminate or damage TMD interfaces, further reducing performance. Here, we address these fundamental issues by employing: (1) transparent graphene contacts to mitigate Fermi-level pinning, (2) MoOxcapping for doping, passivation and anti-reflection, and (3) a clean, non-damaging direct transfer method to realize devices on lightweight flexible polyimide substrates. These lead to record PCE of 5.1% and record specific power of 4.4 W g−1for flexible TMD (WSe2) solar cells, the latter on par with prevailing thin-film solar technologies cadmium telluride, copper indium gallium selenide, amorphous silicon and III-Vs. We further project that TMD solar cells could achieve specific power up to 46 W g−1, creating unprecedented opportunities in a broad range of industries from aerospace to wearable and implantable electronics.

     
    more » « less
  5. Abstract Hf 0.5 Zr 0.5 O 2 (HZO) thin films are promising candidates for non-volatile memory and other related applications due to their demonstrated ferroelectricity at the nanoscale and compatibility with Si processing. However, one reason that HZO has not been fully scaled into industrial applications is due to its deleterious wake-up and fatigue behavior which leads to an inconsistent remanent polarization during cycling. In this study, we explore an interfacial engineering strategy in which we insert 1 nm Al 2 O 3 interlayers at either the top or bottom HZO/TiN interface of sequentially deposited metal-ferroelectric-metal capacitors. By inserting an interfacial layer while limiting exposure to the ambient environment, we successfully introduce a protective passivating layer of Al 2 O 3 that provides excess oxygen to mitigate vacancy formation at the interface. We report that TiN/HZO/TiN capacitors with a 1 nm Al 2 O 3 at the top interface demonstrate a higher remanent polarization (2P r ∼ 42 μ C cm −2 ) and endurance limit beyond 10 8 cycles at a cycling field amplitude of 3.5 MV cm −1 . We use time-of-flight secondary ion mass spectrometry, energy dispersive spectroscopy, and grazing incidence x-ray diffraction to elucidate the origin of enhanced endurance and leakage properties in capacitors with an inserted 1 nm Al 2 O 3 layer. We demonstrate that the use of Al 2 O 3 as a passivating dielectric, coupled with sequential ALD fabrication, is an effective means of interfacial engineering and enhances the performance of ferroelectric HZO devices. 
    more » « less