skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effects of experimental warming on floral scent, display and rewards in two subalpine herbs
Abstract Background and AimsFloral volatiles, visual traits and rewards mediate attraction and defence in plant–pollinator and plant–herbivore interactions, but these floral traits might be altered by global warming through direct effects of temperature or longer-term impacts on plant resources. We examined the effect of warming on floral and leaf volatile emissions, floral morphology, plant height, nectar production, and oviposition by seed predators. MethodsWe used open-top chambers that warmed plants in the field by +2–3 °C on average (+6–11 °C increase in daily maxima) for 2–4 weeks across 1–3 years at three sites in Colorado, USA. Volatiles were sampled from two closely related species of subalpine Ipomopsis with different pollinators: Ipomopsis aggregata ssp. aggregata, visited mainly by hummingbirds, and Ipomopsis tenuituba ssp. tenuituba, often visited by hawkmoths. Key ResultsAlthough warming had no detected effects on leaf volatiles, the daytime floral volatiles of both I. aggregata and I. tenuituba responded in subtle ways to warming, with impacts that depended on the species, site and year. In addition to the long-term effect of warming, temperature at the time of sampling independently affected the floral volatile emissions of I. aggregata during the day and I. tenuituba at night. Warming had little effect on floral morphology for either species and it had no effect on nectar concentration, maximum inflorescence height or flower redness in I. aggregata. However, warming increased nectar production in I. aggregata by 41 %, a response that would attract more hummingbird visits, and it reduced oviposition by fly seed predators by ≥72 %. ConclusionsOur results suggest that floral traits can show different levels of plasticity to temperature changes in subalpine environments, with potential effects on animal behaviours that help or hinder plant reproduction. They also illustrate the need for more long-term field warming studies, as shown by responses of floral volatiles in different ways to weeks of warming vs. temperature at the time of sampling.  more » « less
Award ID(s):
2135270 1654655 1624073
PAR ID:
10484560
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Annals of Botany
ISSN:
0305-7364
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Climate change is disrupting floral traits that mediate mutualistic and antagonistic species interactions. Plastic responses of these traits to multiple shifting conditions may be adaptive, depending on natural selection in new environments.We manipulated snowmelt date over three seasons (3–11 d earlier) in factorial combination with growing‐season precipitation (normal, halved, or doubled) to measure plastic responses of volatile emissions and other floral traits inIpomopsis aggregata. We quantified how precipitation and early snowmelt affected selection on traits by seed predators and pollinators.Within years, floral emissions did not respond to precipitation treatments but shifted with snowmelt treatment depending on the year. Across 3 yr, emissions correlated with both precipitation and snowmelt date. These effects were driven by changes in soil moisture. Selection on several traits changed with earlier snowmelt or reduced precipitation, in some cases driven by predispersal seed predation. Floral trait plasticity was not generally adaptive.Floral volatile emissions shifted in the face of two effects of climate change, and the new environments modulated selection imposed by interacting species. The complexity of the responses underscores the need for more studies of how climate change will affect floral volatiles and other floral traits. 
    more » « less
  2. Abstract Climate change can cause changes in expression of organismal traits that influence fitness. In flowering plants, floral traits can respond to drought, and that phenotypic plasticity has the potential to affect pollination and plant reproductive success. Global climate change is leading to earlier snow melt in snow‐dominated ecosystems as well as affecting precipitation during the growing season, but the effects of snow melt timing on floral morphology and rewards remain unknown. We conducted crossed manipulations of spring snow melt timing (early vs. control) and summer monsoon precipitation (addition, control, and reduction) that mimicked recent natural variation, and examined plastic responses in floral traits ofIpomopsis aggregataover 3 years in the Rocky Mountains. We tested whether increased summer precipitation compensated for earlier snow melt, and if plasticity was associated with changes in soil moisture and/or leaf gas exchange. Lower summer precipitation decreased corolla length, style length, corolla width, sepal width, and nectar production, and increased nectar concentration. Earlier snow melt (taking into account natural and experimental variation) had the same effects on those traits and decreased inflorescence height. The effect of reduced summer precipitation was stronger in earlier snow melt years for corolla length and sepal width. Trait reductions were explained by drier soil during the flowering period, but this effect was only partially explained by how drier soils affected plant water stress, as measured by leaf gas exchange. We predicted the effects of plastic trait changes on pollinator visitation rates, pollination success, and seed production using prior studies onI. aggregata. The largest predicted effect of drier soil on relative fitness components via plasticity was a decrease in male fitness caused by reduced pollinator rewards (nectar production). Early snow melt and reduced precipitation are strong drivers of phenotypic plasticity, and both should be considered when predicting effects of climate change on plant traits in snow‐dominated ecosystems. 
    more » « less
  3. Abstract Climate change can impact plant fitness and population persistence directly through changing abiotic conditions and indirectly through its effects on species interactions. Pollination and seed predation are important biotic interactions that can impact plant fitness, but their impact on population growth rates relative to the role of direct climatic effects is unknown.We combined 13 years of experiments on pollen limitation of seed set and pre‐dispersal seed predation inIpomopsis aggregata, a subalpine wildflower, with a long‐term demographic study that has documented declining population growth with earlier spring snowmelt date. We determined how pollen limitation and seed predation changed with snowmelt date over 21 years and incorporated those effects into an integral projection model to assess relative impacts of biotic factors on population growth.Both pollen limitation and the difference in stigma pollen load between pollen‐supplemented and control plants declined over years. Neither pollen limitation nor seed predation changed detectably with snowmelt date, suggesting an absence of indirect effects of that specific abiotic factor on these indices of biotic interactions. The projected biotic impacts of pollen limitation and seed predation on population growth rate were small compared to factors associated with snowmelt date. Providing full pollination would delay the projected date when earlier snowmelt will cause populations to fall below replacement by only 14 years.Synthesis. Full pollination and elimination of seed predation would not compensate for the strong detrimental effects of early snowmelt on population growth rate, which inI. aggregataappears driven largely by abiotic environmental factors. The reduction over two decades in pollen limitation also suggests that natural selection on floral traits may weaken with continued climate change. These results highlight the value of studying both abiotic factors and biotic interactions to understand how climate change will influence plant populations. 
    more » « less
  4. Abstract In ecological speciation, incipient species diverge due to natural selection that is ecologically based. In flowering plants, different pollinators could mediate that selection (pollinator-mediated divergent selection) or other features of the environment that differ between habitats of 2 species could do so (environment-mediated divergent selection). Although these mechanisms are well understood, they have received little rigorous testing, as few studies of divergent selection across sites of closely related species include both floral traits that influence pollination and vegetative traits that influence survival. This study employed common gardens in sites of the 2 parental species and a hybrid site, each containing advanced generation hybrids along with the parental species, to test these forms of ecological speciation in plants of the genus Ipomopsis. A total of 3 vegetative traits (specific leaf area, leaf trichomes, and photosynthetic water-use efficiency) and 5 floral traits (corolla length and width, anther insertion, petal color, and nectar production) were analyzed for impacts on fitness components (survival to flowering and seeds per flower, respectively). These traits exhibited strong clines across the elevational gradient in the hybrid zone, with narrower clines in theory reflecting stronger selection or higher genetic variance. Plants with long corollas and inserted anthers had higher seeds per flower at the Ipomopsis tenuituba site, whereas selection favored the reverse condition at the Ipomopsis aggregata site, a signature of divergent selection. In contrast, no divergent selection due to variation in survival was detected on any vegetative trait. Selection within the hybrid zone most closely resembled selection within the I. aggregata site. Across traits, the strength of divergent selection was not significantly correlated with width of the cline, which was better predicted by evolvability (standardized genetic variance). These results support the role of pollinator-­mediated divergent selection in ecological speciation and illustrate the importance of genetic variance in determining divergence across hybrid zones. 
    more » « less
  5. Plant phenological and growth responses to experimental warming are widely documented, but less is known about warming effects on plant–pollinator interactions. We investigated the effects of short- and long-term passive warming on flowering phenology, insect visitation, fruit production, and floral rewards in the Low Arctic in northern Alaska. To better understand the role of insect visitors in plant reproductive success, we quantified pollen loads on floral visitors and tested for pollen limitation in four species. Long-term warming advanced flowering onset in evergreen shrubs and forbs. Warming, in general, increased the duration of flowering for forbs, evergreen shrubs, and deciduous shrubs. Considering all growth forms together, long-term warming increased floral density. This pattern was primarily driven by deciduous and evergreen shrubs. Dipterans accounted for more visits than Hymenopterans, although Hymenopterans had higher pollen loads. Insect exclusion and warming decreased fruit set in the forb, Bistorta officinalis Delarbre. Nectar volume in the deciduous shrub, Vaccinium uliginosum, was higher in the warmed plots than the control, but nectar quality did not differ. Advanced flowering onset, longer flowering duration, and increased flower density and nectar volume may have important implications for the pollinator community, warranting further research on long-term warming effects on tundra ecosystems. 
    more » « less