skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Backward-Designing the Perfect User Experience Internships for Deep Space Network Operations
“How do you imagine people will operate the Deep Space Network in ten years?” After introducing some problems of operating the global collection of space-leaning telecommunications equipment, this prompt was one of the first questions we asked students to set the stage of their 8- or 10-week internships. While inquiry methods are typically applied to classroom learning, we applied similar strategies to designing custom internships that would be meaningful to the student and beneficial to the project, drawing on students’ unique background and experiences. Inquiry methods have the benefits to the student of giving them a scaffolded space to choose an investigation and deliverable which complements their strengths, or one that stretches them to learn new skills. Working backwards from initial project goals, we scoped the initial question-forming phase of inquiry design to those open issues the project needed addressing. The Deep Space Network was undergoing a major transformation in Follow-the-Sun, transitioning to daylight-only operation from 24/7 work. This resulted in many open questions requiring contributions in the fields of user research, design, and software development. We identified other objectives in the areas of leadership; teamwork; disability, equity, inclusion; and validation and iteration. This chapter describes the methods we used to design the internship project, how we facilitated it, prepared for each intern’s arrival, and measured progress in the students’ 8- to 10-week internships. This method has been used for all 18 interns over seven years to positive outcomes, resulting in four internal hires.  more » « less
Award ID(s):
1743117
PAR ID:
10484599
Author(s) / Creator(s):
;
Editor(s):
Seagroves, Scott; Barnes, Austin; Metevier, Anne; Porter, Jason; Hunter, Lisa
Publisher / Repository:
Institute for Scientist & Engineer Educators (ISEE)
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Need/Motivation (e.g., goals, gaps in knowledge) The ESTEEM implemented a STEM building capacity project through students’ early access to a sustainable and innovative STEM Stepping Stones, called Micro-Internships (MI). The goal is to reap key benefits of a full-length internship and undergraduate research experiences in an abbreviated format, including access, success, degree completion, transfer, and recruiting and retaining more Latinx and underrepresented students into the STEM workforce. The MIs are designed with the goals to provide opportunities for students at a community college and HSI, with authentic STEM research and applied learning experiences (ALE), support for appropriate STEM pathway/career, preparation and confidence to succeed in STEM and engage in summer long REUs, and with improved outcomes. The MI projects are accessible early to more students and build momentum to better overcome critical obstacles to success. The MIs are shorter, flexibly scheduled throughout the year, easily accessible, and participation in multiple MI is encouraged. ESTEEM also establishes a sustainable and collaborative model, working with partners from BSCS Science Education, for MI’s mentor, training, compliance, and building capacity, with shared values and practices to maximize the improvement of student outcomes. New Knowledge (e.g., hypothesis, research questions) Research indicates that REU/internship experiences can be particularly powerful for students from Latinx and underrepresented groups in STEM. However, those experiences are difficult to access for many HSI-community college students (85% of our students hold off-campus jobs), and lack of confidence is a barrier for a majority of our students. The gap between those who can and those who cannot is the “internship access gap.” This project is at a central California Community College (CCC) and HSI, the only affordable post-secondary option in a region serving a historically underrepresented population in STEM, including 75% Hispanic, and 87% have not completed college. MI is designed to reduce inequalities inherent in the internship paradigm by providing access to professional and research skills for those underserved students. The MI has been designed to reduce barriers by offering: shorter duration (25 contact hours); flexible timing (one week to once a week over many weeks); open access/large group; and proximal location (on-campus). MI mentors participate in week-long summer workshops and ongoing monthly community of practice with the goal of co-constructing a shared vision, engaging in conversations about pedagogy and learning, and sustaining the MI program going forward. Approach (e.g., objectives/specific aims, research methodologies, and analysis) Research Question and Methodology: We want to know: How does participation in a micro-internship affect students’ interest and confidence to pursue STEM? We used a mixed-methods design triangulating quantitative Likert-style survey data with interpretive coding of open-responses to reveal themes in students’ motivations, attitudes toward STEM, and confidence. Participants: The study sampled students enrolled either part-time or full-time at the community college. Although each MI was classified within STEM, they were open to any interested student in any major. Demographically, participants self-identified as 70% Hispanic/Latinx, 13% Mixed-Race, and 42 female. Instrument: Student surveys were developed from two previously validated instruments that examine the impact of the MI intervention on student interest in STEM careers and pursuing internships/REUs. Also, the pre- and post (every e months to assess longitudinal outcomes) -surveys included relevant open response prompts. The surveys collected students’ demographics; interest, confidence, and motivation in pursuing a career in STEM; perceived obstacles; and past experiences with internships and MIs. 171 students responded to the pre-survey at the time of submission. Outcomes (e.g., preliminary findings, accomplishments to date) Because we just finished year 1, we lack at this time longitudinal data to reveal if student confidence is maintained over time and whether or not students are more likely to (i) enroll in more internships, (ii) transfer to a four-year university, or (iii) shorten the time it takes for degree attainment. For short term outcomes, students significantly Increased their confidence to continue pursuing opportunities to develop within the STEM pipeline, including full-length internships, completing STEM degrees, and applying for jobs in STEM. For example, using a 2-tailed t-test we compared means before and after the MI experience. 15 out of 16 questions that showed improvement in scores were related to student confidence to pursue STEM or perceived enjoyment of a STEM career. Finding from the free-response questions, showed that the majority of students reported enrolling in the MI to gain knowledge and experience. After the MI, 66% of students reported having gained valuable knowledge and experience, and 35% of students spoke about gaining confidence and/or momentum to pursue STEM as a career. Broader Impacts (e.g., the participation of underrepresented minorities in STEM; development of a diverse STEM workforce, enhanced infrastructure for research and education) The ESTEEM project has the potential for a transformational impact on STEM undergraduate education’s access and success for underrepresented and Latinx community college students, as well as for STEM capacity building at Hartnell College, a CCC and HSI, for students, faculty, professionals, and processes that foster research in STEM and education. Through sharing and transfer abilities of the ESTEEM model to similar institutions, the project has the potential to change the way students are served at an early and critical stage of their higher education experience at CCC, where one in every five community college student in the nation attends a CCC, over 67% of CCC students identify themselves with ethnic backgrounds that are not White, and 40 to 50% of University of California and California State University graduates in STEM started at a CCC, thus making it a key leverage point for recruiting and retaining a more diverse STEM workforce. 
    more » « less
  2. NA (Ed.)
    This Research paper explores the activities within the biologically inspired design-focused engineering curriculum to determine if they fostered students’ engagement in learning. This work builds on concurrent research exploring students' application of BID in engineering and teachers’ implementation of BID within their respective engineering classrooms. Participants comprised ninth-grade high school students (n=12) enrolled in the first-year engineering course across two high schools. Qualitative content analysis was conducted on classroom observation field notes, student focus groups, teacher curriculum enactment surveys, and teacher interviews. The finding revealed that student engagement varied across the seven-week-long unit. In the initial week, engagement was relatively low since the activities were static and required learning to be scaffolded via worksheets. However, during weeks three through six, engagement positively shifted due to the activities being more dynamic, requiring students to engage in inquiry and design learning. Furthermore, students’ academic engagement was fostered due to hands-on experiences and workbased authentic problems presented in the unit, which encouraged collaboration. 
    more » « less
  3. As educators and researchers, we often enjoy enlivening classroom discussions by including examples of cutting-edge high-throughput (HT) technologies that propelled scientific discovery and created repositories of new information. We also call for the use of evidence-based teaching practices to engage students in ways that promote equity and learning. The complex datasets produced by HT approaches can open the doors to discovery of novel genes, drugs, and regulatory networks, so students need experience with the effective design, implementation, and analysis of HT research. Nevertheless, we miss opportunities to contextualize, define, and explain the potential and limitations of HT methods. One evidence-based approach is to engage students in realistic HT case studies. HT cases immerse students with messy data, asking them to critically consider data analysis, experimental design, ethical implications, and HT technologies.The NSF HITS (High-throughput Discovery Science and Inquiry-based Case Studies for Today’s Students) Research Coordination Network in Undergraduate Biology Education seeks to improve student quantitative skills and participation in HT discovery. Researchers and instructors in the network learn about case pedagogy, HT technologies, publicly available datasets, and computational tools. Leveraging this training and interdisciplinary teamwork, HITS participants then create and implement HT cases. Our initial case collection has been used in >15 different courses at a variety of institutions engaging >600 students in HT discovery. We share here our rationale for engaging students in HT science, our HT cases, and network model to encourage other life science educators to join us and further develop and integrate HT complex datasets into curricula. 
    more » « less
  4. In pre-college levels, integrated science, technology, engineering, and mathematics (STEM) are often taught by science or mathematics teachers. These teachers lack the engineering and technology background and they do not necessarily use project-based and inquiry-oriented instructional strategies. To close the gap in the qualified STEM education teacher workforce, the authors developed and piloted a novel course to train preservice STEM teachers to effectively employ project-based and inquiry-oriented teaching strategies at pre-college levels. This 3-credit research and design experience course was piloted in the Spring 2023 semester. The preservice STEM teachers, enrolled in the course, engaged in hands-on activities, engineering project-based training, inquiry-based learning techniques through research training, makerspace training, field experience, and mentorship. The course comprised two parts. In part I, the students received research training. In part II, the students engaged in engineering design and makerspace professional development. In this paper, we report on the course design elements and the impact of the course activities on students’ self-efficacy in teaching STEM subjects using emerging technology, as well as their teaching approaches and understanding of student learning. The authors conducted a mixed methods study and collected both qualitative and quantitative data. Preliminary results of the multiyear study are presented. Initial findings indicate a heightened confidence of the students in their ability to deliver STEM content in secondary classrooms. Students improved their teaching approaches and reported positive experiences with the course. 
    more » « less
  5. Internships are widely promoted high-impact practices that can have positive impacts on students’ academic and post-graduate success, yet how specific features facilitate these outcomes is understudied. Instead, internships are often studied in terms of mere participation, without recognizing that these experiences are complex pedagogic spaces shaped by professional cultures and decisions about instructional design. In this sequential mixed-methods study we use sociocultural learning theory to interpret data from online surveys (n = 435) and focus groups (n = 52) with students at five institutions. Stepwise linear regression analyses of demographic and programmatic variables associated with intern satisfaction, developmental value, and career adaptability indicated that first-generation status, sex, race and income level, and supervisor behaviors were significantly associated with satisfaction and development. Analyses of qualitative data revealed that features of positive (clear communication, availability, feedback) and negative (unavailability, inattention to learning) supervision impacted student experiences. These findings reveal that internships should be designed with careful attention to task scaffolding, student autonomy and supervisor assistance, depending on the professional context and situation. These results highlight the need for colleges and employers to design internships as mentored and culturally shaped learning spaces, provide supervisor training, and consider the cultural backgrounds of students when matching them to internships. 
    more » « less