We study the problem of classifier derandomization in machine learning: given a stochastic binary classifier f:X→[0,1], sample a deterministic classifier f̂ :X→{0,1} that approximates the output of f in aggregate over any data distribution. Recent work revealed how to efficiently derandomize a stochastic classifier with strong output approximation guarantees, but at the cost of individual fairness -- that is, if f treated similar inputs similarly, f̂ did not. In this paper, we initiate a systematic study of classifier derandomization with metric fairness guarantees. We show that the prior derandomization approach is almost maximally metric-unfair, and that a simple ``random threshold'' derandomization achieves optimal fairness preservation but with weaker output approximation. We then devise a derandomization procedure that provides an appealing tradeoff between these two: if f is α-metric fair according to a metric d with a locality-sensitive hash (LSH) family, then our derandomized f̂ is, with high probability, O(α)-metric fair and a close approximation of f. We also prove generic results applicable to all (fair and unfair) classifier derandomization procedures, including a bias-variance decomposition and reductions between various notions of metric fairness.
more »
« less
NeuroSOFM-Classifier: A Low Power Classifier Using Continuous Real-Time Unsupervised Clustering
- Award ID(s):
- 1926465
- PAR ID:
- 10484666
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9781450399388
- Page Range / eLocation ID:
- 1 to 6
- Format(s):
- Medium: X
- Location:
- Virtual OR USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Arai, Kohei (Ed.)This Quantum Machine Learning Classifier (QMLC) uses the mathematics of quantum computing in a deep neural network to find and classify the specific flower type of the three different iris flower species: Versicolor, Setosa and Virginica, utilizing the SciKit-Learn dataset ``Iris.'' In that dataset, there are four characteristic features of each iris type: petal length, petal width, sepal length, and sepal width. The quantum computing machine learning classifier out-performed the classical deep learning neural network methods. Significant is that this classifier trained in fewer epochs.more » « less
An official website of the United States government
