Forest ecosystem attributes and their spatial variation across the landscape have the potential to subsequently influence variations in fire behavior. Understanding this variation is critical to fire managers in their ability to predict fire behavior and rate of spread. However, a fine-scale description of fuel patterns and their relationship with overstory and understory attributes for north-central Appalachia is lacking due to the complicated quantification of variations in topography, forest attributes, and their interactions. To better understand the fire environment in north-central Appalachia and provide a comprehensive evaluation based on fine-scale topography, ninety-four plots were established across different aspects and slope positions within an oak–hickory forest located in southeast Ohio, USA, which historically fell within fire regime group I with a fire return interval ranging from 7 to 26 years. The data collected from these plots were analyzed by four components of the fire environment, which include the overstory, understory, shrub and herbaceous layers, surface fuels, and fuel conditions. The results reveal that fuel bed composition changed across aspects and slope position, and it is a primary factor that influences the environment where fire occurs. Specifically, the oak fuel load was highest on south-facing slopes and in upper slope positions, while maple fuel loads were similar across all aspects and slope positions. Oak and maple basal areas were the most significant factors in predicting the oak and maple fuel load, respectively. In the shrub and undergrowth layers, woody plant coverage was higher in upper slope positions compared to lower slope positions. Overstory canopy closure displayed a significant negative correlation with understory trees/ha and woody plant variables. The findings in this study can provide a better understanding of fine-scale fuel bed and vegetation characteristics, which can subsequently feed into fire behavior modeling research in north-central Appalachia based on the different characterizations of the fire environment by landscape position.
more »
« less
Relationship between local-scale topography and vegetation on the invasive C 4 perennial bunchgrass buffelgrass ( Pennisetum ciliare ) size and reproduction
Abstract Buffelgrass [Pennisetum ciliare(L.) Link] is an invasive C4perennial bunchgrass that is a threat to biodiversity in aridlands in the Americas and Australia. Topography influencesP. ciliareoccurrence at large spatial scales, but further investigation into the relationship between local-scale topography andP. ciliaregrowth and reproduction would be beneficial. Further, density-dependent effects onP. ciliaregrowth and reproduction have been demonstrated in greenhouse experiments, but the extent to which density dependence influencesP. ciliarein natural populations warrants further investigation. Here we present a study on the relationships between local-scale topography (aspect and slope gradient) and vegetation characteristics (shrub cover,P. ciliarecover, andP. ciliaredensity) and their interactions on individualP. ciliareplant size and reproduction. We measured slope gradient, aspect, shrub cover,P. ciliarecover,P. ciliaredensity, and the total number of live culms and reproductive culms of 10P. ciliareplants in 33 4 by 4 m plots located in 11 transects at the Desert Laboratory at Tumamoc Hill, Tucson, AZ, USA. We modeled the relationships at the local scale of (1)P. ciliarecover and density with aspect and slope gradient and (2)P. ciliaresize and reproduction with abiotic (slope gradient and aspect) and biotic (P. ciliarecover and density and native shrub and cacti cover) characteristics. Aspect and slope gradient were poor predictors ofP. ciliarecover and density in already invaded sites at the scale of our plots. However, aspect had a significant relationship withP. ciliareplant size and reproduction.Pennisetum ciliareplants on south-facing aspects were larger and produced more reproductive culms than plants on other aspects. Further, we found no relationship betweenP. ciliaredensity andP. ciliareplant size and reproduction. Shrub cover was positively correlated withP. ciliarereproduction. South-facing aspects are likely most vulnerable to fast spread and infilling by newP. ciliareintroductions.
more »
« less
- Award ID(s):
- 1924016
- PAR ID:
- 10484733
- Publisher / Repository:
- Cambridge University Press
- Date Published:
- Journal Name:
- Invasive Plant Science and Management
- Volume:
- 16
- Issue:
- 1
- ISSN:
- 1939-7291
- Page Range / eLocation ID:
- 38 to 46
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The cover of woody perennial plants (trees and shrubs) in arid ecosystems is at least partially constrained by water availability. However, the extent to which maximum canopy cover is limited by rainfall and the degree to which soil water holding capacity and topography impacts maximum shrub cover are not well understood. Similar to other deserts in the U.S. southwest, plant communities at the Jornada Basin Long‐Term Ecological Research site in the northern Chihuahuan Desert have experienced a long‐term state change from perennial grassland to shrubland dominated by woody plants. To better understand this transformation, and the environmental controls and constraints on shrub cover, we created a shrub cover map using high spatial resolution images and explored how maximum shrub cover varies with landform, water availability, and soil characteristics. Our results indicate that when clay content is below ~18%, the upper limit of shrub cover is positively correlated with plant available water as mediated by surface soil clay influence on water retention. At surface soil clay contents >18%, maximum shrub cover decreases, presumably because the amount of water percolating to depths preferentially used by deep‐rooted shrubs is diminished. In addition, the relationship between shrub cover and density suggests that self‐thinning occurs in denser stands in most landforms of the Jornada Basin, indicating that shrub–shrub competition interacts with soil properties to constrain maximum shrub cover in the northern Chihuahuan Desert.more » « less
-
Abstract Understanding how soil thickness and bedrock weathering vary across ridge and valley topography is needed to constrain the flowpaths of water and sediment production within a landscape. Here, we investigate saprolite and weathered bedrock properties across a ridge‐valley system in the Northern California Coast Ranges, USA, where topography varies with slope aspect such that north‐facing slopes have thicker soils and are more densely vegetated than south‐facing slopes. We use active source seismic refraction surveys to extend observations made in boreholes to the hillslope scale. Seismic velocity models across several ridges capture a high velocity gradient zone (from 1,000 to 2,500 m/s) located ∼4–13 m below ridgetops that coincides with transitions in material strength and chemical depletion observed in boreholes. Comparing this transition depth across multiple north‐ and south‐facing slopes, we find that the thickness of saprolite does not vary with slope aspects. Additionally, seismic survey lines perpendicular and parallel to bedding planes reveal weathering profiles that thicken upslope and taper downslope to channels. Using a rock physics model incorporating seismic velocity, we estimate the total porosity of the saprolite and find that inherited fractures contribute a substantial amount of pore space in the upper 6 m, and the lateral porosity structure varies strongly with hillslope position. The aspect‐independent weathering structure suggests that the contemporary critical zone structure at Rancho Venada is a legacy of past climate and vegetation conditions.more » « less
-
Henn, J (Ed.)Abstract Intraspecific trait variation can influence plant performance in different environments and may thereby determine the ability of individual plants to respond to climate change. However, our understanding of its patterns and environmental drivers across different spatial scales is incomplete, especially in understudied regions like the Arctic.To fill this knowledge gap, we examined above‐ground and below‐ground traits from three shrub taxa expanding across the tundra biome and evaluated their relationships with multiple microenvironmental and macroclimatic factors. The traits reflected plant size and structure (plant height, leaf area and root to shoot ratio), leaf economics (specific leaf area, nitrogen content), and root economics and collaboration with mycorrhizal fungi (specific root length, root tissue density, nitrogen content, and ectomycorrhizal colonisation intensity). We also measured leaf and root δ15N and leaf δ13C to characterise nitrogen source and acquisition pathways and plant water stress. Traits were measured in replicated plots (N = 135) varying in soil microclimate, thaw depth and organic layer thickness established across five sites spanning a macroclimate gradient in northern Alaska. This hierarchical design allowed us to disentangle the independent and combined effects of fine‐scale and broad‐scale factors on intraspecific trait variation.We found substantial intraspecific variation at fine spatial scales for most traits and less variation along the macroclimate gradient and between shrub taxa. Consistent with these patterns, microenvironmental factors, mainly soil moisture and thaw depth, interacted with macroclimate, mainly climatic water deficit, to structure size‐structural and leaf trait variation. In contrast, most root traits responded additively to thaw depth and macroclimate.Synthesis. Our results demonstrate that above‐ground and below‐ground tundra shrub traits respond differently to microenvironmental and macroclimatic variation. These differing responses contribute to substantial trait variation at fine spatial scales and may decouple above‐ground and below‐ground trait responses to climate change.more » « less
-
null (Ed.)Deciduous shrubs are expanding across the graminoid-dominated nutrient-poor arctic tundra. Absorptive root traits of shrubs are key determinants of nutrient acquisition strategy from tundra soils, but the variations of shrub root traits within and among common shrub genera across the arctic climatic gradient are not well resolved. Consequently, the impacts of arctic shrub expansion on belowground nutrient cycling remain largely unclear. Here, we collected roots from 170 plots of three commonly distributed shrub genera ( Alnus , Betula , and Salix ) and a widespread sedge ( Eriophorum vaginatum ) along a climatic gradient in northern Alaska. Absorptive root traits that are relevant to the strategy of plant nutrient acquisition were determined. The influence of aboveground dominant vegetation cover on the standing root biomass, root productivity, vertical rooting profile, as well as the soil nitrogen (N) pool in the active soil layer was examined. We found consistent root trait variation among arctic plant genera along the sampling transect. Alnus and Betula had relatively thicker and less branched, but more frequently ectomycorrhizal colonized absorptive roots than Salix , suggesting complementarity between root efficiency and ectomycorrhizal dependence among the co-existing shrubs. Shrub-dominated plots tended to have more productive absorptive roots than sedge-dominated plots. At the northern sites, deep absorptive roots (>20 cm depth) were more frequent in birch-dominated plots. We also found shrub roots extensively proliferated into the adjacent sedge-dominated plots. The soil N pool in the active layer generally decreased from south to north but did not vary among plots dominated by different shrub or sedge genera. Our results reveal diverse nutrient acquisition strategies and belowground impacts among different arctic shrubs, suggesting that further identifying the specific shrub genera in the tundra landscape will ultimately provide better predictions of belowground dynamics across the changing arctic.more » « less
An official website of the United States government

