skip to main content


Title: Life‐history stage and the population genetics of the tiger mosquito Aedes albopictus at a fine spatial scale
Abstract

As a widespread vector of disease with an expanding range, the mosquitoAedes albopictusSkuse (Diptera: Culicidae) is a high priority for research and management.A. albopictushas a complex life history with aquatic egg, larval and pupal stages, and a terrestrial adult stage. This requires targeted management strategies for each life stage, coordinated across time and space. Population genetics can aid inA. albopictuscontrol by evaluating patterns of genetic diversity and dispersal. However, how life stage impacts population genetic characteristics is unknown. We examined whether patterns ofA. albopictusgenetic diversity and differentiation changed with life stage at a spatial scale relevant to management efforts. We first conducted a literature review of field‐caughtA. albopictuspopulation genetic papers and identified 101 peer‐reviewed publications, none of which compared results between life stages. Our study uniquely examines population genomic patterns of egg and adultA. albopictusat five sites in Wake County, North Carolina, USA, using 8425 single nucleotide polymorphisms. We found that the level of genetic diversity and connectivity between sites varied between adults and eggs. This warrants further study and is critical for research aimed at informing local management.

 
more » « less
Award ID(s):
1754376
NSF-PAR ID:
10484755
Author(s) / Creator(s):
; ;
Publisher / Repository:
Royal Entomological Society
Date Published:
Journal Name:
Medical and Veterinary Entomology
Volume:
37
Issue:
1
ISSN:
0269-283X
Page Range / eLocation ID:
132 to 142
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Sea turtles present a model for the potential impacts of climate change on imperiled species, with projected warming generating concern about their persistence. Various sea turtle life-history traits are affected by temperature; most strikingly, warmer egg incubation temperatures cause female-biased sex ratios and higher embryo mortality. Predictions of sea turtle resilience to climate change are often focused on how resulting male limitation or reduced offspring production may affect populations. In the present article, by reviewing research on sea turtles, we provide an overview of how temperature impacts on incubating eggs may cascade through life history to ultimately affect population viability. We explore how sex-specific patterns in survival and breeding periodicity determine the differences among offspring, adult, and operational sex ratios. We then discuss the implications of skewed sex ratios for male-limited reproduction, consider the negative correlation between sex ratio skew and genetic diversity, and examine consequences for adaptive potential. Our synthesis underscores the importance of considering the effects of climate throughout the life history of any species. Lethal effects (e.g., embryo mortality) are relatively direct impacts, but sublethal effects at immature life-history stages may not alter population growth rates until cohorts reach reproductive maturity. This leaves a lag during which some species transition through several stages subject to distinct biological circumstances and climate impacts. These perspectives will help managers conceptualize the drivers of emergent population dynamics and identify existing knowledge gaps under different scenarios of predicted environmental change.

     
    more » « less
  2. Abstract

    Humans have exaggerated natural habitat fragmentation, negatively impacting species dispersal and reducing population connectivity. Habitat fragmentation can be especially detrimental in freshwater populations, whose dispersal is already constrained by the river network structure. Aquatic insects, for instance, are generally limited to two primary modes of dispersal: downstream drift in the aquatic juvenile life stages and flight during the terrestrial winged adult stage. Yet the impacts of large hydropower dams can make rivers uninhabitable for incoming (drifting) juvenile insects, with remaining refugia found only in tributaries. The ability of adult aquatic insects to traverse such river stretches in search of suitable tributary habitat likely depends on factors such as species‐specific dispersal ability and distance between tributaries. To explore the intersection of natural and human‐induced habitat fragmentation on aquatic insect dispersal ability, we quantified population genetics of three taxa with varying dispersal abilities, a caddisfly (Hydropsychidae,Hydropsyche oslari), a mayfly (Baetidae:Fallceon quilleri), and a water strider (Veliidae:Rhagovelia distincta), throughout tributaries of the Colorado River in the Grand Canyon, Arizona, USA. Using 2bRAD reduced genome sequencing and landscape genetics analyses, we revealed a strong pattern of isolation by distance among mayfly populations. This contrasts with caddisfly and water strider populations, which were largely panmictic. Analysis of thousands of informative single nucleotide polymorphisms showed that realized dispersal ability may not be accurately predicted by species traits for these widespread species. Principal components analysis revealed a strong division between caddisfly populations upstream and downstream of Havasu Creek (279 km through the 390 km study reach), suggesting that the geography of the Grand Canyon imposes a dispersal barrier for this species. Our use of genetic tools in the Grand Canyon to understand population structure has enabled us to elucidate dispersal barriers for aquatic insects. Ultimately, these data may be useful in informing effective conservation management plans for understudied organisms of conservation interest.

     
    more » « less
  3. Abstract

    Lemurs are among the world's most threatened mammals. The critically endangered black‐and‐white ruffed lemur (Varecia variegata), in particular, has recently experienced rapid population declines due to habitat loss, ecological sensitivities to habitat degradation, and extensive human hunting pressure. Despite this, a recent study indicates that ruffed lemurs retain among the highest levels of genetic diversity for primates. Identifying how this diversity is apportioned and whether gene flow is maintained among remnant populations will help to diagnose and target conservation priorities. We sampled 209 individuals from 19 sites throughout the remainingV. variegatarange. We used 10 polymorphic microsatellite loci and ~550 bp of mtDNAsequence data to evaluate genetic structure and population dynamics, including dispersal patterns and recent population declines. Bayesian cluster analyses identified two distinct genetic clusters, which optimally partitioned data into populations occurring on either side of theMangoro River. Localities north of the Mangoro were characterized by greater genetic diversity, greater gene flow (lower genetic differentiation) and higher mtDNAhaplotype and nucleotide diversity than those in the south. Despite this, genetic differentiation across all sites was high, as indicated by high averageFST(0.247) and ΦST(0.544), and followed a pattern of isolation‐by‐distance. We use these results to suggest future conservation strategies that include an effort to maintain genetic diversity in the north and restore connectivity in the south. We also note the discordance between patterns of genetic differentiation and current subspecies taxonomy, and encourage a re‐evaluation of conservation management units moving forward.

     
    more » « less
  4. Abstract

    Parasites may influence their hosts in multiple ways, ranging from physiological changes and behavioral modifications, to altering life history traits. One fitness component that is often considered in relation to parasitism is host fecundity. The larval acanthocephalan parasite,Profilicollis altmani, commonly infects the Pacific mole crab,Emerita analoga; yet this parasite's effect on the crab's fecundity is unknown. Consequently, we examined the effects of acanthocephalan parasitism on the fecundity of this mole crab species. Crabs were collected from the swash intertidal zone in Monterey Bay, CA, and the following parameters were quantified: crab body size (carapace length) and weight, egg‐bearing status (nongravid and gravid), egg number and diameter, total volume and weight of egg mass, and their developmental stages (from newly laid eggs to recognizable zoea larval stage). Parasite prevalence, intensity of infection, and body size of larval cystacanths (measured as volume) were assessed. Host fecundity was positively correlated with both body size and body weight. No differences in egg weight were found between uninfected and infected crabs. Similarly, no difference in crab body weight at various embryonic developmental phases was documented between uninfected and infected crabs. Cystacanth volumes in infected nongravid and infected gravid crabs were not significantly different. Our study suggests that the parasiteP. altmanidoes not have any appreciable effect on the fecundity ofE. analogaand that female mole crabs undergo normal reproduction and maintain robust population sizes in their natural environments. Our findings thus appear to moderate the pervasive notion of a major impact of parasitism on host reproduction.

     
    more » « less
  5. Abstract

    Understanding the genomic consequences of population decline is important for predicting species' vulnerability to intensifying global change. Empirical information about genomic changes in populations in the early stages of decline, especially for those still experiencing immigration, remains scarce. We used 7834 autosomal SNPs and demographic data for 288 Florida scrub jays (Aphelocoma coerulescens; FSJ) sampled in 2000 and 2008 to compare levels of genetic diversity, inbreeding, relatedness, and lengths of runs of homozygosity (ROH) between two subpopulations within dispersal distance of one another but have experienced contrasting demographic trajectories. At Archbold Biological Station (ABS), the FSJ population has been stable because of consistent habitat protection and management, while at nearby Placid Lakes Estates (PLE), the population declined precipitously due to suburban development. By the onset of our sampling in 2000, birds in PLE were already less heterozygous, more inbred, and on average more related than birds in ABS. No significant changes occurred in heterozygosity or inbreeding across the 8‐year sampling interval, but average relatedness among individuals decreased in PLE, thus by 2008 average relatedness did not differ between sites. PLE harbored a similar proportion of short ROH but a greater proportion of long ROH than ABS, suggesting one continuous population of shared demographic history in the past, which is now experiencing more recent inbreeding. These results broadly uphold the predictions of simple population genetic models based on inferred effective population sizes and rates of immigration. Our study highlights how, in just a few generations, formerly continuous populations can diverge in heterozygosity and levels of inbreeding with severe local population decline despite ongoing gene flow.

     
    more » « less