Abstract A series of new isoxazole‐substituted aryl iodides1 a–1 dhave been synthesized by DIB‐mediated [3+2] cycloaddition reaction of 2‐iodo‐1,3‐bis(prop‐2‐yn‐1‐yloxy) benzene (4) with corresponding benzaldehyde oximes5 a–5 d. Structure of the synthesized aryl iodides1were characterized by IR,1H NMR,13C NMR and HRMS. The structure of1 awas also confirmed by single‐crystal X‐ray crystallography. Further, catalytic activity of iodoarenes1 a–1 dwas screened for the oxidation of hydroquinones and sulfides. On oxidation using aryl iodides1withm‐CPBA as terminal oxidant, hydroquinones afforded benzoquinones while sulfides gave corresponding sulfoxides in good to excellent yields. Iodoarene1 bshowed the best catalytic activity for the oxidation of sulfides and hydroquinones. Moreover, iodoarene1 b, was also utilized for α‐oxytosylation of acetophenones.
more »
« less
Ligand‐Free Ultrasmall Recyclable Iridium(0) Nanoparticles for Regioselective Aromatic Hydrogenation of Phosphine Oxide Scaffolds: An Easy Access to New Phosphine Ligands
Abstract Herein, we developed the recyclable ligand‐free iridium (Ir)‐hydride based Ir0nanoparticles (NPs) for the first regioselective partial hydrogenation of PV‐substituted naphthalenes. Both the isolated and in situ generated NPs are catalytically active. A control nuclear magnetic resonance (NMR) study revealed the presence of metal‐surface‐bound hydrides, most likely formed from Ir0species. A control NMR study confirmed that hexafluoroisopropanol as a solvent was accountable for substrate activation via hydrogen bonding. High‐resolution transmission electron microscopy of the catalyst supports the formation of ultrasmall NPs, and X‐ray photoelectron spectroscopy confirmed the dominance of Ir0in the NPs. The catalytic activity of NPs is broad as showcased by highly regioselective aromatic ring reduction in various phosphine oxides or phosphonates. The study also showcased a novel pathway toward preparingbis(diphenylphosphino)‐5,5′,6,6′,7,7′,8,8′‐octahydro‐1,1′‐binaphthyl (H8‐BINAP) and its derivatives without losing enantioselectivity during catalytic events.
more »
« less
- Award ID(s):
- 2044778
- PAR ID:
- 10484766
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 62
- Issue:
- 39
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present the 3 mm wavelength spectra of 28 local galaxy merger remnants obtained with the Large Millimeter Telescope. Sixteen molecular lines from 14 different molecular species and isotopologues were identified, and 21 out of 28 sources were detected in one or more molecular lines. On average, the line ratios of the dense gas tracers, such as HCN (1–0) and HCO+(1–0), to13CO (1–0) are 3–4 times higher in ultra/luminous infrared galaxies (U/LIRGs) than in non-LIRGs in our sample. These high line ratios could be explained by the deficiency of13CO and high dense gas fractions suggested by high HCN (1–0)/12CO (1–0) ratios. We calculate the IR-to-HCN (1–0) luminosity ratio as a proxy of the dense gas star formation efficiency. There is no correlation between the IR/HCN ratio and the IR luminosity, while the IR/HCN ratio varies from source to source ((1.1–6.5) × 103L☉/(K km s−1pc2)). Compared with the control sample, we find that the average IR/HCN ratio of the merger remnants is higher by a factor of 2–3 than those of the early/mid-stage mergers and nonmerging LIRGs, and it is comparable to that of the late-stage mergers. The IR-to-12CO (1–0) ratios show a similar trend to the IR/HCN ratios. These results suggest that star formation efficiency is enhanced by the merging process and maintained at high levels even after the final coalescence. The dynamical interactions and mergers could change the star formation mode and continue to impact the star formation properties of the gas in the postmerger phase.more » « less
-
Abstract Olefin carbofunctionalization reactions are indispensable tools for constructing diverse, functionalized scaffolds from simple starting materials. However, achieving precise control over regioselectivity in intermolecular reactions remains a formidable challenge. Here, we demonstrate that using PAd2nBu as a ligand enables regioselective heteroannulation ofo-bromoanilines with branched 1,3-dienes through ligand control. This approach provides regiodivergent access to 3-substituted indolines, showcasing excellent regioselectivity and reactivity across a range of functionalized substrates. To gain further insights into the origin of selectivity control, we employ a data-driven strategy, developing a linear regression model using calculated parameters for phosphorus ligands. This model identifies four key parameters governing regioselectivity in this transformation, paving the way for future methodology development. Additionally, density functional theory calculations elucidate key selectivity-determining transition structures along the reaction pathway, corroborating our experimental observations and establishing a solid foundation for future advancements in regioselective olefin difunctionalization reactions.more » « less
-
Cobalt(II) acetylacetonate complexes bearing a phosphine ligand can be key intermediates or precursors to cobalt‐based catalysts; however, they have been rarely studied, especially from a molecular structure point of view. This work is focused on the understanding of how different phosphines react with Co(acac)2(acac = acetylacetonate). To do so, a variety of analytical tools, including NMR and IR spectroscopy, X‐ray crystallography, mass spectrometry, and elemental analysis, have been used to study the reactions and characterize the isolated products. These results have shown that the monodentate ligand, HPPh2, binds to Co(acac)2weakly and reversibly to produce Co2(acac)4(HPPh2), whereas the bidentate ligand, 1,2‐bis(diphenylphosphino)ethane (dppe), interacts with Co(acac)2more strongly to yield a 1D coordination polymer of Co(acac)2(dppe). 2‐(Dicyclohexylphosphino)methyl‐1 H‐pyrrole (CyPNH), which is a pyrrole‐tethered phosphine, forms an unusual 5‐coordinate cobalt complex, Co(acac)2(CyPNH), in which the pyrrole moiety participates in a bifurcated hydrogen–bonding interaction with the [acac]–ligands. In contrast, another bidentate ligand, 4,5‐bis(diphenylphosphino)‐9,9‐dimethylxanthene (xantphos), fails to react with Co(acac)2, presumably due to its wide bite angle and difficulty in bridging two metals.more » « less
-
Abstract Trees in residential environments are affected by a unique combination of environmental and anthropogenic factors, including occasional insect outbreaks that are increasing in frequency and severity due to climate change. We studied loblolly pine trees infested by bark beetles in a residential backyard in a southeastern US city. We investigated the responses of tree and stand‐level transpiration to environmental factors (solar radiation, atmospheric vapor pressure deficit, and soil moisture), severe weather events (strong winds and heavy storms), bark beetle infestation, and human actions (insecticide treatments and tree removals). We used constant heat dissipation probes to make continuous sap flux measurements (J0) in tree boles. Over 22 months of the study,J0of trees with confirmed infestation decreased from ~90 to ~60 g cm−2 day−1andJ0of the rest of the trees increased from ~60 to ~80 g cm−2 day−1. One infested tree died, as itsJ0steadily declined from 110 g cm−2 day−1to zero over the course of 2 months, followed by a loss of foliage and visible signs of severe infestation 6 months later.J0was sensitive to variations in incoming solar radiation and atmospheric vapor pressure deficit. In most trees,J0linearly responded to soil water content during drought periods. Yet despite complex dynamics ofJ0variations, plot‐level transpiration at the end of the study was the same as at the beginning due to compensatory increases in tree transpiration rates. This study highlights the intrinsic interplay of environmental, biotic, and anthropogenic factors in residential environments where human actions may directly mediate ecosystem responses to climate.more » « less
An official website of the United States government

