Context. The first encounters of Parker Solar Probe (PSP) with the Sun revealed the presence of ubiquitous localised magnetic deflections in the inner heliosphere; these structures, often called switchbacks, are particularly striking in solar wind streams originating from coronal holes. Aims. We report the direct piece of evidence for magnetic reconnection occurring at the boundaries of three switchbacks crossed by PSP at a distance of 45 to 48 solar radii to the Sun during its first encounter. Methods. We analyse the magnetic field and plasma parameters from the FIELDS and Solar Wind Electrons Alphas and Protons instruments. Results. The three structures analysed all show typical signatures of magnetic reconnection. The ion velocity and magnetic field are first correlated and then anti-correlated at the inbound and outbound edges of the bifurcated current sheets with a central ion flow jet. Most of the reconnection events have a strong guide field and moderate magnetic shear, but one current sheet shows indications of quasi anti-parallel reconnection in conjunction with a magnetic field magnitude decrease by 90%. Conclusions. Given the wealth of intense current sheets observed by PSP, reconnection at switchback boundaries appears to be rare. However, as the switchback boundaries accomodate currents, one can conjecture that the geometry of these boundaries offers favourable conditions for magnetic reconnection to occur. Such a mechanism would thus contribute in reconfiguring the magnetic field of the switchbacks, affecting the dynamics of the solar wind and eventually contributing to the blending of the structures with the regular wind as they propagate away from the Sun.
more »
« less
Kinetic-scale Current Sheets in the Solar Wind at 1 au: Properties and the Necessary Condition for Reconnection
Abstract We present a data set and properties of 18,785 proton kinetic-scale current sheets collected over 124 days in the solar wind using magnetic field measurements at 1/11 s resolution aboard the Wind spacecraft. We show that all of the current sheets are in the parameter range where reconnection is not suppressed by diamagnetic drift of the X-line. We argue this necessary condition for magnetic reconnection is automatically satisfied due to the geometry of current sheets dictated by their source, which is the local plasma turbulence. The current sheets are shown to be elongated along the background magnetic field and dependence of the current sheet geometry on local plasma beta is revealed. We conclude that reconnection in the solar wind is not likely to be suppressed or controlled by the diamagnetic suppression condition.
more »
« less
- Award ID(s):
- 1902684
- PAR ID:
- 10484862
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 923
- Issue:
- 1
- ISSN:
- 2041-8205
- Format(s):
- Medium: X Size: Article No. L19
- Size(s):
- Article No. L19
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Pickup ions (PUIs) play a crucial role in the heliosphere, contributing to the mediation of large-scale structures such as the distant solar wind, the heliospheric termination shock, and the heliopause. While magnetic reconnection is thought to be a common process in the heliosphere due to the presence of heliospheric current sheets, it is poorly understood how PUIs might affect the evolution of magnetic reconnection. Although it is reasonable to suppose that PUIs decrease the reconnection rate since the plasma beta becomes much larger than 1 when PUIs are included, we show for the first time that such a supposition is invalid and that PUI-induced turbulence, heat conduction, and viscosity can preferentially boost magnetic reconnection in heliospheric current sheets in the distant solar wind. This suggests that it is critical to include the effect of the turbulence, heat conduction, and viscosity caused by PUIs to understand the dynamics of magnetic reconnection in the outer heliosphere.more » « less
-
Context. Flux ropes in the solar wind are a key element of heliospheric dynamics and particle acceleration. When associated with current sheets, the primary formation mechanism is magnetic reconnection and flux ropes in current sheets are commonly used as tracers of the reconnection process. Aims. Whilst flux ropes associated with reconnecting current sheets in the solar wind have been reported, their occurrence, size distribution, and lifetime are not well understood. Methods. Here we present and analyse new Solar Orbiter magnetic field data reporting novel observations of a flux rope confined to a bifurcated current sheet in the solar wind. Comparative data and large-scale context is provided by Wind. Results. The Solar Orbiter observations reveal that the flux rope, which does not span the current sheet, is of ion scale, and in a reconnection formation scenario, existed for a prolonged period of time as it was carried out in the reconnection exhaust. Wind is also found to have observed clear signatures of reconnection at what may be the same current sheet, thus demonstrating that reconnection signatures can be found separated by as much as ∼2000 Earth radii, or 0.08 au. Conclusions. The Solar Orbiter observations provide new insight into the hierarchy of scales on which flux ropes can form, and show that they exist down to the ion scale in the solar wind. The context provided by Wind extends the spatial scale over which reconnection signatures have been found at solar wind current sheets. The data suggest the local orientations of the current sheet at Solar Orbiter and Wind are rotated relative to each other, unlike reconnection observed at smaller separations; the implications of this are discussed with reference to patchy vs. continuous reconnection scenarios.more » « less
-
Abstract The temporal variability of magnetopause reconnection is an important aspect of solar wind magnetosphere coupling. Even under stable solar wind driving, reconnection can be triggered, modulated, or suppressed because of magnetic field and plasma conditions near the magnetopause boundary. We analyze a unique event in which a THEMIS satellite crosses the subsolar magnetopause three times within a 5 min interval in the presence of a cold‐ion population on the magnetospheric side of the boundary. During the first crossing, the satellite detects reconnection outflow and a D‐ shaped ion velocity distribution earthward from the boundary, indicating an active reconnection. The signatures disappear during the second crossing when the magnetospheric cold‐ion density increases significantly and reappear during the third crossing when the magnetospheric density drops to a level comparable to that of the first crossing. The solar wind and magnetosheath conditions do not change much during the interval. The magnetospheric population is evidently associated with a plasmaspheric plume with considerable variation in density. According to the theory of mass loading, the presence of such a plume population results in the local Alfvén speed at the second crossing being 40% smaller compared to the first and third crossings. However, the theory itself does not suggest suppression. We discuss possible suppression mechanisms considering the additional effects of the prevailing solar wind and local magnetopause conditions.more » « less
-
Abstract Magnetic reconnection is a ubiquitous plasma process that transforms magnetic energy into particle energy during eruptive events throughout the universe. Reconnection not only converts energy during solar flares and geomagnetic substorms that drive space weather near Earth, but it may also play critical roles in the high energy emissions from the magnetospheres of neutron stars and black holes. In this review article, we focus on collisionless plasmas that are most relevant to reconnection in many space and astrophysical plasmas. Guided by first-principles kinetic simulations and spaceborne in-situ observations, we highlight the most recent progress in understanding this fundamental plasma process. We start by discussing the non-ideal electric field in the generalized Ohm’s law that breaks the frozen-in flux condition in ideal magnetohydrodynamics and allows magnetic reconnection to occur. We point out that this same reconnection electric field also plays an important role in sustaining the current and pressure in the current sheet and then discuss the determination of its magnitude (i.e., the reconnection rate), based on force balance and energy conservation. This approach to determining the reconnection rate is applied to kinetic current sheets with a wide variety of magnetic geometries, parameters, and background conditions. We also briefly review the key diagnostics and modeling of energy conversion around the reconnection diffusion region, seeking insights from recently developed theories. Finally, future prospects and open questions are discussed.more » « less
An official website of the United States government
