skip to main content


Title: A Study of Two Periodogram Algorithms for Improving the Detection of Small Transiting Planets
Abstract

The sensitivities of two periodograms are compared for weak signal planet detection in transit surveys: the widely used Box Least Squares (BLS) algorithm following light curve detrending and the Transit Comb Filter (TCF) algorithm following autoregressive ARIMA modeling. Small depth transits are injected into light curves with different simulated noise characteristics. Two measures of spectral peak significance are examined: the periodogram signal-to-noise ratio (S/N) and a false alarm probability (FAP) based on the generalized extreme value distribution. The relative performance of the BLS and TCF algorithms for small planet detection is examined for a range of light curve characteristics, including orbital period, transit duration, depth, number of transits, and type of noise. We find that the TCF periodogram applied to ARIMA fit residuals with the S/N detection metric is preferred when short-memory autocorrelation is present in the detrended light curve and even when the light curve noise had white Gaussian noise. BLS is more sensitive to small planets only under limited circumstances with the FAP metric. BLS periodogram characteristics are inferior when autocorrelated noise is present due to heteroscedastic noise and false period detection. Application of these methods to TESS light curves with known small exoplanets confirms our simulation results. The study ends with a decision tree that advises transit survey scientists on procedures to detect small planets most efficiently. The use of ARIMA detrending and TCF periodograms can significantly improve the sensitivity of any transit survey with regularly spaced cadence.

 
more » « less
NSF-PAR ID:
10484870
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
959
Issue:
2
ISSN:
2041-8205
Format(s):
Medium: X Size: Article No. L16
Size(s):
["Article No. L16"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We describe a new transit-detection algorithm designed to detect single-transit events in discontinuous Perkins INfrared Exosatellite Survey (PINES) observations of L and T dwarfs. We use this algorithm to search for transits in 131 PINES light curves and identify two transit candidates: 2MASS J18212815+1414010 (2MASS J1821+1414) and 2MASS J08350622+1953050 (2MASS J0835+1953). We disfavor 2MASS J1821+1414 as a genuine transit candidate due to the known variability properties of the source. We cannot rule out the planetary nature of 2MASS J0835+1953's candidate event and perform follow-up observations in an attempt to recover a second transit. A repeat event has yet to be observed, but these observations suggest that target variability is an unlikely cause of the candidate transit. We perform a Markov Chain Monte Carlo simulation of the light curve and estimate a planet radius ranging from 4.2 − 1.6 + 3.5 R ⊕ to 5.8 − 2.1 + 4.8 R ⊕ , depending on the host’s age. Finally, we perform an injection and recovery simulation on our light-curve sample. We inject planets into our data using measured M-dwarf planet occurrence rates and attempt to recover them using our transit-search algorithm. Our detection rates suggest that, assuming M-dwarf planet occurrence rates, we should have roughly a 1% chance of detecting a candidate that could cause the transit depth we observe for 2MASS J0835+1953. If 2MASS J0835+1953 b is confirmed, it would suggest an enhancement in the occurrence of short-period planets around L and T dwarfs in comparison to M dwarfs, which would challenge predictions from planet formation models. 
    more » « less
  2. Abstract

    Nearly one million light curves from the TESS Year 1 southern hemisphere extracted from Full Field Images with the DIAmante pipeline are processed through the AutoRegressive Planet Search statistical procedure. ARIMA models remove lingering autocorrelated noise, the Transit Comb Filter identifies the strongest periodic signal in the light curve, and a Random Forest machine-learning classifier is trained and applied to identify the best potential candidates. Classifier training sets are based on injections of planetary transit signals, eclipsing binaries, and other variable stars. The optimized classifier has a True Positive Rate of 92.5% and a False Positive Rate of 0.43% from the labeled training set. The result of this DIAmante TESS autoregressive planet search of the southern ecliptic hemisphere analysis is a list of 7377 potential exoplanet candidates. The classifier had a 64% recall rate for previously confirmed exoplanets and a 78% negative recall rate for known False Positives. The completeness map of the injected planetary signals shows high recall rates for planets with 8–30Rradii and periods 0.6–13 days and poor completeness for planets with radii <2Ror periods <1 day. The list has many False Alarms and False Positives that need to be culled with multifaceted vetting operations (Paper II).

     
    more » « less
  3. null (Ed.)
    ABSTRACT We report on the discovery and validation of a two-planet system around a bright (V  = 8.85 mag) early G dwarf (1.43  R⊙, 1.15  M⊙, TOI 2319) using data from NASA’s Transiting Exoplanet Survey Satellite (TESS). Three transit events from two planets were detected by citizen scientists in the month-long TESS light curve (sector 25), as part of the Planet Hunters TESS project. Modelling of the transits yields an orbital period of $11.6264 _{ - 0.0025 } ^ { + 0.0022 }$ d and radius of $3.41 _{ - 0.12 } ^ { + 0.14 }$ R⊕ for the inner planet, and a period in the range 19.26–35 d and a radius of $5.83 _{ - 0.14 } ^ { + 0.14 }$ R⊕ for the outer planet, which was only seen to transit once. Each signal was independently statistically validated, taking into consideration the TESS light curve as well as the ground-based spectroscopic follow-up observations. Radial velocities from HARPS-N and EXPRES yield a tentative detection of planet b, whose mass we estimate to be $11.56 _{ - 6.14 } ^ { + 6.58 }$ M⊕, and allow us to place an upper limit of 27.5 M⊕ (99 per cent confidence) on the mass of planet c. Due to the brightness of the host star and the strong likelihood of an extended H/He atmosphere on both planets, this system offers excellent prospects for atmospheric characterization and comparative planetology. 
    more » « less
  4. ABSTRACT

    The analysis of photometric time series in the context of transiting planet surveys suffers from the presence of stellar signals, often dubbed ‘stellar noise’. These signals, caused by stellar oscillations and granulation, can usually be disregarded for main-sequence stars, as the stellar contributions average out when phase-folding the light curve. For evolved stars, however, the amplitudes of such signals are larger and the timescales similar to the transit duration of short-period planets, requiring that they be modelled alongside the transit. With the promise of TESS delivering of the order of ∼105 light curves for stars along the red giant branch, there is a need for a method capable of describing the ‘stellar noise’ while simultaneously modelling an exoplanet’s transit. In this work, a Gaussian process regression framework is used to model stellar light curves and the method validated by applying it to TESS-like artificial data. Furthermore, the method is used to characterize the stellar oscillations and granulation of a sample of well-studied Kepler low-luminosity red giant branch stars. The parameters determined are compared to equivalent ones obtained by modelling the power spectrum of the light curve. Results show that the method presented is capable of describing the stellar signals in the time domain and can also return an accurate and precise measurement of νmax, i.e. the frequency of maximum oscillation amplitude. Preliminary results show that using the method in transit modelling improves the precision and accuracy of the ratio between the planetary and stellar radius, Rp/R⋆. The method’s implementation is publicly available.1

     
    more » « less
  5. Abstract We describe the Perkins INfrared Exosatellite Survey (PINES), a near-infrared photometric search for short-period transiting planets and moons around a sample of 393 spectroscopically confirmed L- and T-type dwarfs. PINES is performed with Boston University’s 1.8 m Perkins Telescope Observatory, located on Anderson Mesa, Arizona. We discuss the observational strategy of the survey, which was designed to optimize the number of expected transit detections, and describe custom automated observing procedures for performing PINES observations. We detail the steps of the PINES Analysis Toolkit ( PAT ), software that is used to create light curves from PINES images. We assess the impact of second-order extinction due to changing precipitable water vapor on our observations and find that the magnitude of this effect is minimized in Mauna Kea Observatories J band. We demonstrate the validity of PAT through the recovery of a transit of WASP-2 b and known variable brown dwarfs, and use it to identify a new variable L/T transition object: the T2 dwarf WISE J045746.08-020719.2. We report on the measured photometric precision of the survey and use it to estimate our transit-detection sensitivity. We find that for our median brightness targets, assuming contributions from white noise only, we are sensitive to the detection of 2.5 R ⊕ planets and larger. PINES will test whether the increase in sub-Neptune-sized planet occurrence with decreasing host mass continues into the L- and T-dwarf regime. 
    more » « less