skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fitting the Light Curve of 1I/‘Oumuamua with a Nonprincipal Axis Rotational Model and Outgassing Torques
Abstract In this paper, we investigate the nonprincipal axis (NPA) rotational state of 1I/‘Oumuamua—the first interstellar object discovered traversing the inner solar system—from its photometric light curve. Building upon Mashchenko, we develop a model which incorporates NPA rotation and Sun-induced, time-varying outgassing torques to generate synthetic light curves of the object. The model neglects tidal forces, which are negligible compared to outgassing torques over the distances at which ‘Oumuamua was observed. We implement an optimization scheme that incorporates the NPA rotation model to calculate the initial rotation state of the object. We find that an NPA rotation state with an average period of 〈P〉 ≃ 7.34 hr best reproduces the photometric data. The discrepancy between this period and previous estimates is due to continuous period modulation induced by outgassing torques in the rotational model, as well as different periods being used. The best fit to the 2017 October data does not reproduce the 2017 November data (although the later measurements are too sparse to fit). The light curve is consistent with there being no secular evolution of the angular momentum, which is somewhat in tension with the empirical correlations between nuclear spin-up and cometary outgassing. The complex rotation of ‘Oumuamua may be the result of primordial rotation about the smallest principal axis if (i) the object experienced hypervolatile outgassing and (ii) our idealized outgassing model is accurate.  more » « less
Award ID(s):
2303553 1841467
PAR ID:
10484887
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Planetary Science Journal
Volume:
4
Issue:
10
ISSN:
2632-3338
Format(s):
Medium: X Size: Article No. 186
Size(s):
Article No. 186
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this paper, we present an open-source software (Simulator of Asteroid Malformation Under Stress,SAMUS) that simulates constant-density, constant-viscosity liquid bodies subject to tidal forces for a range of assumed viscosities and sizes. This software solves the Navier–Stokes equations on a finite-element mesh, incorporating the centrifugal, Coriolis, self-gravitational, and tidal forces. The primary functionality is to simulate the deformation of minor bodies under the influence of tidal forces. It may therefore be used to constrain the composition and physical structure of bodies experiencing significant tidal forces, such as 99942 Apophis and 1I/‘Oumuamua. We demonstrate thatSAMUSwill be useful to constrain the material properties of Apophis during its near-Earth flyby in 2029. Depending on the material properties, Apophis may experience an area change of up to 0.5%, with similar effects on the photometric brightness. We also applySAMUSto constrain the material dynamic viscosity of 1I/‘Oumuamua, the first interstellar object discovered traversing the inner solar system. ‘Oumuamua experienced a close approach to the Sun at perihelion (q≃ 0.25 au) during which there were significant tidal forces that may have caused deformation of the body. This deformation could have lead to observable changes in the photometric light curve based on the material properties. The application ofSAMUSto produce synthetic observations which incorporate tidal deformation effects demonstrates that no deformation—an infinite dynamic viscosity—best reproduces the photometric data. While these results indicate that ‘Oumuamua did not experience significant tidal deformation, a sophisticated model incorporating nonprincipal axis rotation is necessary to conclusively analyze both ‘Oumuamua and Apophis. 
    more » « less
  2. Abstract The distribution of white dwarf rotation periods provides a means for constraining angular momentum evolution during the late stages of stellar evolution, as well as insight into the physics and remnants of double degenerate mergers. Although the rotational distribution of low-mass white dwarfs is relatively well constrained via asteroseismology, that of high-mass white dwarfs, which can arise from either intermediate-mass stellar evolution or white dwarf mergers, is not. Photometric variability in white dwarfs due to rotation of a spotted star is rapidly increasing the sample size of high-mass white dwarfs with measured rotation periods. We present the discovery of 22.4 minute photometric variability in the light curve of EGGR 156, a strongly magnetic, ultramassive white dwarf. We interpret this variability as rapid rotation, and our data suggest that EGGR 156 is the remnant of a double degenerate merger. Finally, we calculate the rate of period change in rapidly-rotating, massive, magnetic WDs due to magnetic dipole radiation. In many cases, including EGGR 156, the period change is not currently detectable over reasonable timescales, indicating that these WDs could be very precise clocks. For the most highly-magnetic, rapidly-rotating massive WDs, such as ZTF J1901+1450 and RE J0317−853, the period change should be detectable and may help constrain the structure and evolution of these exotic white dwarfs. 
    more » « less
  3. ABSTRACT We investigate the origin of photometric variability in the classical T Tauri star TW Hya by comparing light curves obtained by Transiting Exoplanet Survey Satellite (TESS) and ground-based telescopes with light curves created using three-dimensional (3D) magnetohydrodynamic (MHD) simulations. TW Hya is modelled as a rotating star with a dipole magnetic moment, which is slightly tilted about the rotational axis. We observed that for various model parameters, matter accretes in the unstable regime and produces multiple hotspots on the star’s surface, which leads to stochastic-looking light curves similar to the observed ones. Wavelet and Fourier spectra of observed and modelled light curves show multiple quasi-periodic oscillations (QPOs) with quasi-periods from less than 0.1 to 9 d. Models show that variation in the strength and tilt of the dipole magnetosphere leads to different periodograms, where the period of the star may dominate or be hidden. The amplitude of QPOs associated with the stellar period can be smaller than that of other QPOs if the tilt of the dipole magnetosphere is small and when the unstable regime is stronger. In models with small magnetospheres, the short-period QPOs associated with rotation of the inner disc dominate and can be mistaken for a stellar period. We show that longer period (5–9 d) QPOs can be caused by waves forming beyond the corotation radius. 
    more » « less
  4. We observed 12 Plutinos over two separated years with the 4.3 m Lowell’s Discovery Channel Telescope. Here, we present the first light-curve data for those objects. Three of them (2014 JL80, 2014 JO80, and 2014 JQ80) display a large light-curve amplitude explainable by a single elongated object, but they are most likely caused by a contact binary system due to their light-curve morphology. These potential contact binaries have rotational periods from 6.3 to 34.9 hr and peak-to-peak light-curve variability between 0.6 and 0.8mag. We present partial light curves, allowing us to constrain the light-curve amplitude and the rotational period of another nine Plutinos. By merging our data with the literature, we estimate that up to ∼40% of the Plutinos could be contact binaries. Interestingly, we found that all of the suspected contact binaries in the 3:2 resonance are small with absolute magnitude H>6mag. Based on our sample and the literature, up to ∼50% of the small Plutinos are potential contact binaries. 
    more » « less
  5. Abstract PG 1159-035 is the prototype of the PG 1159 hot (pre-)white dwarf pulsators. This important object was observed during the Kepler satellite K2 mission for 69 days in 59 s cadence mode and by the TESS satellite for 25 days in 20 s cadence mode. We present a detailed asteroseismic analysis of those data. We identify a total of 107 frequencies representing 32ℓ= 1 modes, 27 frequencies representing 12ℓ= 2 modes, and eight combination frequencies. The combination frequencies and the modes with very highkvalues represent new detections. The multiplet structure reveals an average splitting of 4.0 ± 0.4μHz forℓ= 1 and 6.8 ± 0.2μHz forℓ= 2, indicating a rotation period of 1.4 ± 0.1 days in the region of period formation. In the Fourier transform of the light curve, we find a significant peak at 8.904 ± 0.003μHz suggesting a surface rotation period of 1.299 ± 0.002 days. We also present evidence that the observed periods change on timescales shorter than those predicted by current evolutionary models. Our asteroseismic analysis finds an average period spacing forℓ= 1 of 21.28 ± 0.02 s. Theℓ= 2 modes have a mean spacing of 12.97 ± 0.4 s. We performed a detailed asteroseismic fit by comparing the observed periods with those of evolutionary models. The best-fit model hasTeff= 129, 600 ± 11 100 K,M*= 0.565 ± 0.024M, and log g = 7.41 0.54 + 0.38 , within the uncertainties of the spectroscopic determinations. We argue for future improvements in the current models, e.g., on the overshooting in the He-burning stage, as the best-fit model does not predict excitation for all of the pulsations detected in PG 1159-035. 
    more » « less