skip to main content


This content will become publicly available on January 8, 2025

Title: Bridging the Gap of Graphical Information Accessibility in Education With Multimodal Touchscreens Among Students With Blindness and Low Vision

Introduction: Informational graphics and data representations (e.g., charts and figures) are critical for accessing educational content. Novel technologies, such as the multimodal touchscreen which displays audio, haptic, and visual information, are promising for being platforms of diverse means to access digital content. This work evaluated educational graphics rendered on a touchscreen compared to the current standard for accessing graphical content. Method: Three bar charts and geometry figures were evaluated on student ( N = 20) ability to orient to and extract information from the touchscreen and print. Participants explored the graphics and then were administered a set of questions (11–12 depending on graphic group). In addition, participants’ attitudes using the mediums were assessed. Results: Participants performed statistically significantly better on questions assessing information orientation using the touchscreen than print for both bar chart and geometry figures. No statistically significant difference in information extraction ability was found between mediums on either graphic type. Participants responded significantly more favorably to the touchscreen than the print graphics, indicating them as more helpful, interesting, fun, and less confusing. Discussion: Accessing and orienting to information was highly successful by participants using the touchscreen, and was the preferred means of accessing graphical information when compared to the print image for both geometry figures and bar charts. This study highlights challenges in presenting graphics both on touchscreens and in print. Implications for Practitioners: This study offers preliminary support for the use of multimodal, touchscreen tablets as educational tools. Student ability using touchscreen-based graphics seems to be comparable to traditional types of graphics (large print and embossed, tactile graphics), although further investigation may be necessary for tactile graphic users. In summary, educators of students with blindness and visual impairments should consider ways to utilize new technologies, such as touchscreens, to provide more diverse access to graphical information.

 
more » « less
NSF-PAR ID:
10484930
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Journal of Visual Impairment & Blindness
Volume:
117
Issue:
6
ISSN:
0145-482X
Format(s):
Medium: X Size: p. 453-466
Size(s):
["p. 453-466"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Graphical representations are ubiquitous in the learning and teaching of science, technology, engineering, and mathematics (STEM). However, these materials are often not accessible to the over 547,000 students in the United States with blindness and significant visual impairment, creating barriers to pursuing STEM educational and career pathways. Furthermore, even when such materials are made available to visually impaired students, access is likely through literalized modes (e.g., braille, verbal description), which is problematic as these approaches (1) do not directly convey spatial information and (2) are different from the graphic-based materials used by students without visual impairment. The purpose of this study was to design and evaluate a universally accessible system for communicating graphical representations in STEM classes. By combining a multisensory vibro-audio interface and an app running on consumer mobile hardware, the system is meant to work equally well for all students, irrespective of their visual status. We report the design of the experimental system and the results of an experiment where we compared learning performance with the system to traditional (visual or tactile) diagrams for sighted participants (n = 20) and visually impaired participants (n =9) respectively. While the experimental multimodal diagrammatic system (MDS) did result in significant learning gains for both groups of participants, the results also revealed no statistically significant differences in the capacity for learning from graphical information across both comparison groups. Likewise, there were no statistically significant differences in the capacity for learning from graphical information between the stimuli presented through the experimental system and the traditional (visual or tactile) diagram control conditions, across either participant group. These findings suggest that both groups were able to learn graphical information from the experimental system as well as traditional diagram presentation materials. This learning modality was supported without the need for conversion of the diagrams to make them accessible for participants who required tactile materials. The system also provided additional multisensory information for sighted participants to interpret and answer questions about the diagrams. Findings are interpreted in terms of new universal design principles for producing multisensory graphical representations that would be accessible to all learners.

     
    more » « less
  2. Touch is often omitted or viewed as unnecessary in digital learning. Lack of touch feedback limits the accessibility and multimodal capacity of digital educational content. Touchscreens with vibratory, haptic feedback are prevalent, yet this kind of feedback is often under-utilized. This work provides initial investigations into the design, development, and use of vibratory feedback within multimodal, interactive, educational simulations on touchscreen devices by learners with and without visual impairments. The objective of this work is to design and evaluate different haptic paradigms that could support interaction and learning in educational simulations. We investigated the implementation of four haptic paradigms in two physics simulations. Interviews were conducted with eight learners (five sighted learners; three learners with visual impairments) on one simulation and initial results are shared. We discuss the learner outcomes of each paradigm and how they impact design and development moving forward. 
    more » « less
  3. Abstract

    Graph databases capture richly linked domain knowledge by integrating heterogeneous data and metadata into a unified representation. Here, we present the use of bespoke, interactive data graphics (bar charts, scatter plots, etc.) for visual exploration of a knowledge graph. By modeling a chart as a set of metadata that describes semantic context (SPARQL query) separately from visual context (Vega-Lite specification), we leverage the high-level, declarative nature of the SPARQL and Vega-Lite grammars to concisely specify web-based, interactive data graphics synchronized to a knowledge graph. Resources with dereferenceable URIs (uniform resource identifiers) can employ the hyperlink encoding channel or image marks in Vega-Lite to amplify the information content of a given data graphic, and published charts populate a browsable gallery of the database. We discuss design considerations that arise in relation to portability, persistence, and performance. Altogether, this pairing of SPARQL and Vega-Lite—demonstrated here in the domain of polymer nanocomposite materials science—offers an extensible approach to FAIR (findable, accessible, interoperable, reusable) scientific data visualization within a knowledge graph framework.

     
    more » « less
  4. Michalsky, Tova ; Moos, Daniel (Ed.)
    Teachers’ ability to self-regulate their own learning is closely related to their competency to enhance self-regulated learning (SRL) in their students. Accordingly, there is emerging research for the design of teacher dashboards that empower instructors by providing access to quantifiable evidence of student performance and SRL processes. Typically, they capture evidence of student learning and performance to be visualized through activity traces (e.g., bar charts showing correct and incorrect response rates, etc.) and SRL data (e.g., eye-tracking on content, log files capturing feature selection, etc.) in order to provide teachers with monitoring and instructional tools. Critics of the current research on dashboards used in conjunction with advanced learning technologies (ALTs) such as simulations, intelligent tutoring systems, and serious games, argue that the state of the field is immature and has 1) focused only on exploratory or proof-of-concept projects, 2) investigated data visualizations of performance metrics or simplistic learning behaviors, and 3) neglected most theoretical aspects of SRL including teachers’ general lack of understanding their’s students’ SRL. Additionally, the work is mostly anecdotal, lacks methodological rigor, and does not collect critical process data (e.g. frequency, duration, timing, or fluctuations of cognitive, affective, metacognitive, and motivational (CAMM) SRL processes) during learning with ALTs used in the classroom. No known research in the areas of learning analytics, teacher dashboards, or teachers’ perceptions of students’ SRL and CAMM engagement has systematically and simultaneously examined the deployment, temporal unfolding, regulation, and impact of all these key processes during complex learning. In this manuscript, we 1) review the current state of ALTs designed using SRL theoretical frameworks and the current state of teacher dashboard design and research, 2) report the important design features and elements within intelligent dashboards that provide teachers with real-time data visualizations of their students’ SRL processes and engagement while using ALTs in classrooms, as revealed from the analysis of surveys and focus groups with teachers, and 3) propose a conceptual system design for integrating reinforcement learning into a teacher dashboard to help guide the utilization of multimodal data collected on students’ and teachers’ CAMM SRL processes during complex learning. 
    more » « less
  5. Teachers of the visually impaired (TVIs) regularly present tactile materials (tactile graphics, 3D models, and real objects) to students with vision impairments. Researchers have been increasingly interested in designing tools to support the use of tactile materials, but we still lack an in-depth understanding of how tactile materials are created and used in practice today. To address this gap, we conducted interviews with 21 TVIs and a 3-week diary study with eight of them. We found that tactile materials were regularly used for academic as well as non-academic concepts like tactile literacy, motor ability, and spatial awareness. Real objects and 3D models served as “stepping stones” to tactile graphics and our participants preferred to teach with 3D models, despite finding them difficult to create, obtain, and modify. Use of certain materials also carried social implications; participants selected materials that fostered student independence and allow classroom inclusion. We contribute design considerations, encouraging future work on tactile materials to enable student and TVI co-creation, facilitate rapid prototyping, and promote movement and spatial awareness. To support future research in this area, our paper provides a fundamental understanding of current practices. We bridge these practices to established pedagogical approaches and highlight opportunities for growth regarding this important genre of educational materials. 
    more » « less