ABSTRACT The association of GRB170817A with a binary neutron star (BNS) merger has revealed that BNSs produce at least a fraction of short gamma-ray bursts (SGRBs). As gravitational wave (GW) detectors push their horizons, it is important to assess coupled electromagnetic (EM)/GW probabilities and maximize observational prospects. Here, we perform BNS population synthesis calculations with the code mobse, seeding the binaries in galaxies at three representative redshifts, $$z$$ = 0.01, 0.1, and 1 of the Illustris TNG50 simulation. The binaries are evolved and their locations numerically tracked in the host galactic potentials until merger. Adopting the microphysics parameters of GRB170817A, we numerically compute the broad-band light curves of jets from BNS mergers, with the afterglow brightness dependent on the local medium density at the merger site. We perform Monte Carlo simulations of the resulting EM population assuming either a random viewing angle with respect to the jet, or a jet aligned with the orbital angular momentum of the binary, which biases the viewing angle probability for GW-triggered events. We find a gamma-ray detection probability of $$\sim\!2{{\rm per\ cent}},10{{\rm per\ cent}},\mathrm{and}\ 40{{\rm per\ cent}}$$ for BNSs at $$z$$ = 1, 0.1, and 0.01, respectively, for the random case, rising to $$\sim\!75{{\rm per\ cent}}$$ for the $$z$$ = 0.01, GW-triggered aligned case. Afterglow detection probabilities of GW-triggered BNS mergers vary in the range of $$\sim \! 0.3 \!-\! 0.5{{\rm per\ cent}}$$, with higher values for aligned jets, and are comparable across the high- and low-energy bands, unlike gamma-ray-triggered events (cosmological SGRBs) which are significantly brighter at higher energies. We further quantify observational biases with respect to host galaxy masses. 
                        more » 
                        « less   
                    
                            
                            Two Steps Forward and One Step Sideways: The Propagation of Relativistic Jets in Realistic Binary Neutron Star Merger Ejecta
                        
                    
    
            Abstract The association of GRB170817A with GW170817 has confirmed the long-standing hypothesis that binary neutron star (BNS) mergers are the progenitors of at least some short gamma-ray bursts (SGRBs). This connection has ushered in an era in which broadband observations of SGRBs, together with measurements of the time delay between the gravitational waves and the electromagnetic radiation, allow for probing the properties of the emitting outflow and its engine to an unprecedented detail. Because the structure of the radiating outflow is molded by the interaction of a relativistic jet with the binary ejecta, it is of paramount importance to study the system in a realistic setting. Here we present a three-dimensional hydrodynamic simulation of a relativistic jet propagating in the ejecta of a BNS merger, which were computed with a general relativistic magnetohydrodynamic simulation. We find that the jet’s centroid oscillates around the axis of the system, due to inhomogeneities encountered in the propagation. These oscillations allow the jet to find the path of least resistance and travel faster than an identical jet in smooth ejecta. In our setup the breakout time is ∼0.6 s, which is comparable to the expected central engine duration in SGRBs and possibly a non-negligible fraction of the total delay between the gravitational and gamma-ray signals. Our simulation also shows that energy is carried in roughly equal amounts by the jet and by the cocoon, and that about 20% of the injected energy is transferred to the ejecta via mechanical work. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10484949
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 918
- Issue:
- 1
- ISSN:
- 2041-8205
- Format(s):
- Medium: X Size: Article No. L6
- Size(s):
- Article No. L6
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We describe the first observations of the same celestial object with gravitational waves and light. ▪ GW170817 was the first detection of a neutron star merger with gravitational waves. ▪ The detection of a spatially coincident weak burst of gamma-rays (GRB 170817A) 1.7 s after the merger constituted the first electromagnetic detection of a gravitational wave source and established a connection between at least some cosmic short gamma-ray bursts (SGRBs) and binary neutron star mergers. ▪ A fast-evolving optical and near-infrared transient (AT 2017gfo) associated with the event can be interpreted as resulting from the ejection of ∼0.05 M ⊙ of material enriched in r-process elements, finally establishing binary neutron star mergers as at least one source of r-process nucleosynthesis. ▪ Radio and X-ray observations revealed a long-rising source that peaked ∼160,d after the merger. Combined with the apparent superluminal motion of the associated very long baseline interferometry source, these observations show that the merger produced a relativistic structured jet whose core was oriented ≈20 deg from the line of sight and with properties similar to SGRBs. The jet structure likely results from interaction between the jet and the merger ejecta. ▪ The electromagnetic and gravitational wave information can be combined to produce constraints on the expansion rate of the Universe and the equation of state of dense nuclear matter. These multimessenger endeavors will be a major emphasis of future work.more » « less
- 
            Abstract We investigate prospects for the detection of high-energy neutrinos produced in the prolonged jets of short gamma-ray bursts (sGRBs). The X-ray light curves of sGRBs show extended emission components lasting for 100–1000 s, which are considered to be produced by prolonged engine activity. Jets produced by such activity should interact with photons in the cocoon formed by the propagation of the jet inside the ejecta of neutron star mergers. We calculate neutrino emission from jets produced by prolonged engine activity, taking account of the interaction between photons provided from the cocoon and cosmic rays accelerated in the jets. We find that IceCube-Gen2, a future neutrino telescope, with second-generation gravitational-wave detectors will probably be able to observe neutrino signals associated with gravitational waves with around 10 years of operation, regardless of the assumed value of the Lorentz factor of the jets. Neutrino observations may enable us to constrain the dissipation region of the jets. We apply this model to GRB 211211A, a peculiar long GRB whose origin may be a binary neutron star merger. Our model predicts that IceCube is unlikely to detect any associated neutrinos, but a few similar events will be able to put a meaningful constraint on the physical quantities of the prolonged engine activities.more » « less
- 
            null (Ed.)ABSTRACT Neutron star mergers produce a substantial amount of fast-moving ejecta, expanding outwardly for years after the merger. The interaction of these ejecta with the surrounding medium may produce a weak isotropic radio remnant, detectable in relatively nearby events. We use late-time radio observations of short duration gamma-ray bursts (sGRBs) to constrain this model. Two samples of events were studied: four sGRBs that are possibly in the local (<200 Mpc) Universe were selected to constrain the remnant non-thermal emission from the sub-relativistic ejecta, whereas 17 sGRBs at cosmological distances were used to constrain the presence of a proto-magnetar central engine, possibly re-energizing the merger ejecta. We consider the case of GRB 170817A/GW170817 and find that in this case the early radio emission may be quenched by the jet blast-wave. In all cases, for ejecta mass range of $${M}_{\rm {ej}}\lesssim 10^{-2}\, (5\times 10^{-2})\, \mathrm{M}_\odot$$, we can rule out very energetic merger ejecta $${E}_{\rm {ej}}\gtrsim 5\times 10^{52}\, (10^{53})\, \rm erg$$, thus excluding the presence of a powerful magnetar as a merger remnant.more » « less
- 
            Abstract Building on a general relativistic magnetohydrodynamic simulation of a short gamma-ray burst (sGRB) jet with initial magnetizationσ0 = 150, propagating through the dynamical ejecta from a binary neutron star merger, we identify regions of energy dissipation driven by magnetic reconnection and collisionless subshocks within different scenarios. We solve the transport equations for photons, electrons, protons, neutrinos, and intermediate particles up to the photosphere, accounting for all relevant radiative processes, including electron and proton acceleration, and investigate the potential impact of magnetic reconnection occurring in different regions along the jet. We find the photon spectra undergo nonthermal modifications below the photosphere, observable in both on-axis and off-axis emission directions, as well as across different scenarios of energy dissipation and subsequent particle acceleration. Interestingly, the spectral index of the photon energy distribution can vary at most by ∼20% across all different dissipation scenarios. Depending on the dissipation mechanism at play, neutrino signatures may accompany the photon signal, pointing to efficient proton acceleration and shedding light on jet physics. Although our findings are based on one jet simulation, they point to a potential universal origin of the nonthermal features of the Band spectrum observed in sGRBs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
