- Award ID(s):
- 1904919
- NSF-PAR ID:
- 10484993
- Publisher / Repository:
- ACS
- Date Published:
- Journal Name:
- Journal of the American Society for Mass Spectrometry
- ISSN:
- 1879-1123
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Supercritical fluids are typically electrosprayed using an organic solvent makeup flow to facilitate continuous electrical connection and enhancement of electrospray stability. This results in sample dilution, loss in sensitivity, and potential phase separation. Premixing the supercritical fluid with organic solvent has shown substantial benefits to electrospray efficiency and increased analyte charge state. Presented here is a nanospray mass spectrometry system for supercritical fluids (nSF-MS). This split flow system used small i.d. capillaries, heated interface, inline frit, and submicron emitter tips to electrospray quaternary alkyl amines solvated in supercritical CO2 with a 10% methanol modifier. Analyte signal response was evaluated as a function of total system flow rate (0.5–1.5 mL/min) that is split to nanospray a supercritical fluid with linear flow rates between 0.07 and 0.42 cm/sec and pressure ranges (15–25 MPa). The nSF system showed mass-sensitive detection based on increased signal intensity for increasing capillary i.d. and analyte injection volume. These effects indicate efficient solvent evaporation for the analysis of quaternary amines. Carrier additives generally decreased signal intensity. Comparison of the nSF-MS system to the conventional SF makeup flow ESI showed 10-fold signal intensity enhancement across all the capillary i.d.s. The nSF-MS system likely achieves rapid solvent evaporation of the SF at the emitter point. The developed system combined the benefits of the nanoemitters, sCO2, and the low modifier percentage which gave rise to enhancement in MS detection sensitivity.more » « less
-
Nanospraying supercritical fluids coupled to a mass spectrometer (nSF-MS) using a 90% supercritical fluid CO2 carrier (sCO2) has shown an enhanced desolvation compared to traditional liquid eluents. Capillaries of 25, 50, and 75 μm internal diameter (i.d.) with pulled emitter tips provided high MS detection sensitivity. Presented here is an evaluation of the effect of proton affinity, hydrophobicity, and nanoemitter tip size on the nSF-MS signal. This was done using a set of primary, secondary, tertiary, and quaternary amines with butyl, hexyl, octyl, and decyl chains as analytes. Each amine class was analyzed individually to evaluate hydrophobicity and proton affinity effects on signal intensity. The system has shown a mass sensitive detection on a linear dynamic range of 0.1–100 μM. Results indicate that hydrophobicity has a larger effect on the signal response than proton affinity. Nanospraying a mixture of all amine classes using the 75 μm emitter has shown a quaternary amine signal not suppressed by competing analytes. Competing ionization was observed for primary, secondary, and tertiary amines. The 75 and 50 μm emitters demonstrated increased signal with increasing hydrophobicity. Surprisingly, the 25 μm i.d. emitter yielded a signal decrease as the alkyl chain length increased, contrary to conventional understanding. Nanospraying the evaporative fluid in a sub-500 nm emitter likely resulted in differences in the ionization mechanism. Results suggest that 90% sCO2 with 9.99% methanol and 0.01% formic acid yielded fast desolvation, high ionization efficiency, and low matrix effect, which could benefit complex biological matrix analysis.more » « less
-
Rationale In droplet‐assisted ionization (DAI), intact molecular ions are generated from molecules in aerosol droplets by passing the droplets through a temperature‐controlled capillary inlet. Ion formation is explored through the effects of analyte mass flow, droplet solvent composition, and capillary temperature on ion signal intensity.
Methods A Waters SYNAPT G2‐S is adapted for DAI by reconfiguring the inlet with a temperature‐controlled capillary. Droplets are generated by atomization of a solution containing analyte and then sampled through the inlet. If desired, solvent can be removed from the droplets prior to analysis by sending the aerosol through a series of diffusion dryers. Size distributions of the dried aerosols allow the mass flow of analyte into the inlet to be determined.
Results Analyte signal intensities are orders of magnitude higher from droplets containing a protic solvent (water) than an aprotic solvent (acetonitrile). The highest signal intensities for DAI are obtained with inlet temperatures above 500°C, though the optimum temperature is analyte dependent. At elevated temperatures, droplets are thought to undergo rapid solvent evaporation and bursting to produce ions. The lowest signal intensities are generally obtained in the 100–350°C range, where slow solvent evaporation is thought to inhibit ion formation. As the temperature decreases from 100°C down to 25°C, the signal intensity increases significantly. When 3‐nitrobenzonitrile, a common matrix for solid‐state matrix‐assisted ionization (MAI), is added to droplets consisting of 50/50
v /v water and acetonitrile, the matrix enhances ion formation to produce a signal intensity comparable to DAI in 100% water.Conclusions The results are consistent with other inlet ionization techniques, suggesting that similar ion formation mechanisms are operative. Optimized ion yields (the combined effects of ionization probability and ion transmission) for DAI are currently in the 10−5to 10−6range, which is sufficient for many aerosol applications.
-
Capillary flow of liquids plays a key role in many applications including lab-on-a-chip devices, heat pipes and printed electronics manufacturing. Open rectangular microchannels often appear in these applications, with the lack of a top resulting in a complex free-surface morphology and evaporation. In this work we develop a theoretical model based on lubrication theory and kinetically limited evaporation to examine capillary flow of evaporating liquid solutions in open rectangular microchannels connected to circular reservoirs. The model accounts for the complex free-surface morphology, solvent evaporation, Marangoni flows due to gradients in solute concentration and temperature and finite-size reservoir effects. Significant differences are predicted in flow behaviour between pure liquids and liquid solutions due to solvent evaporation and solute transport. Marangoni flows are found to promote more uniform solute deposition patterns after solvent evaporation. Model predictions of meniscus position evolution are in good agreement with prior capillary-flow experiments of aqueous poly(vinyl alcohol) solutions in the presence of evaporation. The model reveals that the principal mechanism through which evaporation influences the meniscus position in the experiments is the increase in viscosity with solute concentration.more » « less
-
null (Ed.)We examine the axisymmetric and non-axisymmetric flows of thin fluid films over a spherical glass dome. A thin film is formed by raising a submerged dome through a silicone oil mixture composed of a volatile, low surface tension species (1 cSt, solvent) and a non-volatile species at a higher surface tension (5 cSt, initial solute volume fraction $\phi _0$ ). Evaporation of the 1 cSt silicone oil establishes a concentration gradient and, thus, a surface tension gradient that drives a Marangoni flow that leads to the formation of an initially axisymmetric mound. Experimentally, when $\phi _0 \leqslant 0.3\,\%$ , the mound grows axisymmetrically for long times (Rodríguez-Hakim et al. , Phys. Rev. Fluids , vol. 4, 2019, pp. 1–22), whereas when $\phi _0 \geqslant 0.35\,\%$ , the mound discharges in a preferred direction, thereby breaking symmetry. Using lubrication theory and numerical solutions, we demonstrate that, under the right conditions, external disturbances can cause an imbalance between the Marangoni flow and the capillary flow, leading to symmetry breaking. In both experiments and simulations, we observe that (i) the apparent, most amplified disturbance has an azimuthal wavenumber of unity, and (ii) an enhanced Marangoni driving force (larger $\phi _0$ ) leads to an earlier onset of the instability. The linear stability analysis shows that capillarity and diffusion stabilize the system, while Marangoni driving forces contribute to the growth in the disturbances.more » « less