skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Estimating atmospheric motion winds from satellite image data using space‐time drift models
Abstract Geostationary weather satellites collect high‐resolution data comprising a series of images. The Derived Motion Winds (DMW) Algorithm is commonly used to process these data and estimate atmospheric winds by tracking features in the images. However, the wind estimates from the DMW Algorithm are often missing and do not come with uncertainty measures. Also, the DMW Algorithm estimates can only be half‐integers, since the algorithm requires the original and shifted data to be at the same locations, in order to calculate the displacement vector between them. This motivates us to statistically model wind motions as a spatial process drifting in time. Using a covariance function that depends on spatial and temporal lags and a drift parameter to capture the wind speed and wind direction, we estimate the parameters by local maximum likelihood. Our method allows us to compute standard errors of the local estimates, enabling spatial smoothing of the estimates using a Gaussian kernel weighted by the inverses of the estimated variances. We conduct extensive simulation studies to determine the situations where our method performs well. The proposed method is applied to the GOES‐15 brightness temperature data over Colorado and reduces prediction error of brightness temperature compared to the DMW Algorithm.  more » « less
Award ID(s):
1953088
PAR ID:
10485003
Author(s) / Creator(s):
; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Environmetrics
Volume:
34
Issue:
8
ISSN:
1180-4009
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In single-molecule super-resolution microscopy, engineered point-spread functions (PSFs) are designed to efficiently encode new molecular properties, such as 3D orientation, into complex spatial features captured by a camera. To fully benefit from their optimality, algorithms must estimate multi-dimensional parameters such as molecular position and orientation in the presence of PSF overlap and model-experiment mismatches. Here, we present a novel joint sparse deconvolution algorithm based on the decomposition of fluorescence images into six basis images that characterize molecular orientation. The proposed algorithm exploits a group-sparsity structure across these basis images and applies a pooling strategy on corresponding spatial features for robust simultaneous estimates of the number, brightness, 2D position, and 3D orientation of fluorescent molecules. We demonstrate this method by imaging DNA transiently labeled with the intercalating dye YOYO-1. Imaging the position and orientation of each molecule reveals orientational order and disorder within DNA with nanoscale spatial precision. 
    more » « less
  2. Abstract. Meteor radars have become widely used instruments to study atmospheric dynamics, particularly in the 70 to 110 km altitude region. Thesesystems have been proven to provide reliable and continuous measurements of horizontal winds in the mesosphere and lower thermosphere. Recently,there have been many attempts to utilize specular and/or transverse scatter meteor measurements to estimate vertical winds and vertical windvariability. In this study we investigate potential biases in vertical wind estimation that are intrinsic to the meteor radar observation geometryand scattering mechanism, and we introduce a mathematical debiasing process to mitigate them. This process makes use of a spatiotemporal Laplacefilter, which is based on a generalized Tikhonov regularization. Vertical winds obtained from this retrieval algorithm are compared to UA-ICON modeldata. This comparison reveals good agreement in the statistical moments of the vertical velocity distributions. Furthermore, we present the firstobservational indications of a forward scatter wind bias. It appears to be caused by the scattering center's apparent motion along the meteortrajectory when the meteoric plasma column is drifted by the wind. The hypothesis is tested by a radiant mapping of two meteor showers. Finally, weintroduce a new retrieval algorithm providing a physically and mathematically sound solution to derive vertical winds and wind variability frommultistatic meteor radar networks such as the Nordic Meteor Radar Cluster (NORDIC) and the Chilean Observation Network De meteOr Radars(CONDOR). The new retrieval is called 3DVAR+DIV and includes additional diagnostics such as the horizontal divergence and relative vorticity toensure a physically consistent solution for all 3D winds in spatially resolved domains. Based on this new algorithm we obtained vertical velocitiesin the range of w = ± 1–2 m s−1 for most of the analyzed data during 2 years of collection, which is consistent with the values reportedfrom general circulation models (GCMs) for this timescale and spatial resolution. 
    more » « less
  3. Whitecap foam generated by wind-driven wave breaking is distinguished as either active (stage A) or residual (stage B). Discrimination of whitecap stages is essential to quantify the influence of whitecaps on the physical and chemical processes at the marine boundary layer. This study provides a novel method to identify whitecap stages based on visible imagery using particle image velocimetry (PIV). Data used are from a Gulf of Mexico cruise where collocated infrared (IR) and visible cameras simultaneously recorded whitecaps. IR images were processed by an established thresholding method to determine stage A lifetime from brightness temperature. The visible images were also filtered using a thresholding method and then processed using PIV to estimate the average whitecap velocity. A linear relationship was established between the lifetime of stage A and the timescale of averaged velocity. This novel method allows stage A whitecap lifetime to be determined using whitecap velocity and provides an objective approach to separate whitecap stages. This method paves the way for future research to easily quantify whitecap stages using affordable off-the-shelf video cameras. Results, which include evidence that whitecaps stop advancing before stage A ends and may be an indication of bubble plume degassing, are discussed. 
    more » « less
  4. Abstract Tropical cyclones (TCs) are one of the greatest threats to coastal communities along the US Atlantic and Gulf coasts due to their extreme wind, rainfall and storm surge. Analyzing historical TC climatology and modeling TC hazards can provide valuable insight to planners and decision makers. However, detailed TC size information is typically only available from 1988 onward, preventing accurate wind, rainfall, and storm surge modeling for TCs occurring earlier in the historical record. To overcome temporally limited TC size data, we develop a database of size estimates that are based on reanalysis data and a physics‐based model. Specifically, we utilize ERA5 reanalysis data to estimate the TC outer size, and a physics‐based TC wind model to estimate the radius of maximum wind. We evaluate our TC size estimates using two high‐resolution wind data sets as well as Best Track information for a wide variety of TCs. Using the estimated size information plus the TC track and intensity, we reconstruct historical storm tides from 1950 to 2020 using a basin‐scale hydrodynamic model and show that our reconstructions agree well with observed peak storm tide and storm surge. Finally, we demonstrate that incorporating an expanded set of historical modeled storm tides beginning in 1950 can enhance our understanding of US coastal hazard. Our newly developed database of TC sizes and associated storm tides/surges can aid in understanding North Atlantic TC climatology and modeling TC wind, storm surge, and rainfall hazard along the US Atlantic and Gulf coasts. 
    more » « less
  5. Abstract Air‐sea drag governs the momentum transfer between the atmosphere and the ocean and remains largely unknown in hurricane winds. We revisit the momentum budget and eddy covariance methods to estimate the surface drag coefficient in the laboratory. Our drag estimates agree with field measurements in low‐to‐moderate winds and previous laboratory measurements in hurricane‐force winds. The drag coefficient saturates at 2.6×10−3andU10≈25 m s−1, in agreement with previous laboratory results by Takagaki et al. (2012,). During our analysis, we discovered an error in the original source code used by Donelan et al. (2004,). We present the corrected data and describe the correction procedure. Although the correction to the data does not change the key finding of drag saturation in strong winds, its magnitude and wind speed threshold are significantly changed. Our findings emphasize the need for an updated and unified drag parameterization based on field and laboratory data. 
    more » « less