Abstract We present comprehensive optical observations of SN 2021gmj, a Type II supernova (SN II) discovered within a day of explosion by the Distance Less Than 40 Mpc survey. Follow-up observations show that SN 2021gmj is a low-luminosity SN II (LL SN II), with a peak magnitudeMV= −15.45 and an Feiivelocity of ∼1800 km s−1at 50 days past explosion. Using the expanding photosphere method, we derive a distance of Mpc. From the tail of the light curve we obtain a radioactive nickel mass of = 0.014 ± 0.001M⊙. The presence of circumstellar material (CSM) is suggested by the early-time light curve, early spectra, and high-velocity Hαin absorption. Analytical shock-cooling models of the light curve cannot reproduce the fast rise, supporting the idea that the early-time emission is partially powered by the interaction of the SN ejecta and CSM. The inferred low CSM mass of 0.025M⊙in our hydrodynamic-modeling light-curve analysis is also consistent with our spectroscopy. We observe a broad feature near 4600 Å, which may be high-ionization lines of C, N, or/and Heii. This feature is reproduced by radiation-hydrodynamic simulations of red supergiants with extended atmospheres. Several LL SNe II show similar spectral features, implying that high-density material around the progenitor may be common among them.
more »
« less
Characterizing the Ordinary Broad-line Type Ic SN 2023pel from the Energetic GRB 230812B
Abstract We report observations of the optical counterpart of the long gamma-ray burst (GRB) GRB 230812B and its associated supernova (SN) SN 2023pel. The proximity (z= 0.36) and high energy (Eγ,iso∼ 1053erg) make it an important event to study as a probe of the connection between massive star core collapse and relativistic jet formation. With a phenomenological power-law model for the optical afterglow, we find a late-time flattening consistent with the presence of an associated SN. SN 2023pel has an absolute peakr-band magnitude ofMr= −19.46 ± 0.18 mag (about as bright as SN 1998bw) and evolves on quicker timescales. Using a radioactive heating model, we derive a nickel mass powering the SN ofMNi= 0.38 ± 0.01M⊙and a peak bolometric luminosity ofLbol∼ 1.3 × 1043erg s−1. We confirm SN 2023pel’s classification as a broad-line Type Ic SN with a spectrum taken 15.5 days after its peak in therband and derive a photospheric expansion velocity ofvph= 11,300 ± 1600 km s−1at that phase. Extrapolating this velocity to the time of maximum light, we derive the ejecta massMej= 1.0 ± 0.6M⊙and kinetic energy . We find that GRB 230812B/SN 2023pel has SN properties that are mostly consistent with the overall GRB-SN population. The lack of correlations found in the GRB-SN population between SN brightness andEγ,isofor their associated GRBs across a broad range of 7 orders of magnitude provides further evidence that the central engine powering the relativistic ejecta is not coupled to the SN powering mechanism in GRB-SN systems.
more »
« less
- Award ID(s):
- 2034437
- PAR ID:
- 10485046
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 960
- Issue:
- 2
- ISSN:
- 2041-8205
- Format(s):
- Medium: X Size: Article No. L18
- Size(s):
- Article No. L18
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We study a magnitude-limited sample of 36 broad-lined type Ic supernovae (SNe Ic-BL) from the Zwicky Transient Facility Bright Transient Survey (detected between 2018 March and 2021 August), which is the largest systematic study of SNe Ic-BL done in literature thus far. We present the light curves (LCs) for each of the SNe and analyze the shape of the LCs to derive empirical parameters, along with the explosion epochs for every event. The sample has an average absolute peak magnitude in therband of mag. Using spectra obtained around peak light, we compute expansion velocities from the Feii5169 Å line for each event with high enough signal-to-noise ratio spectra, and find an average value of km s−1. We also compute bolometric LCs, study the blackbody temperature and radii evolution over time, and derive the explosion properties of the SNe. The explosion properties of the sample have average values of , , and erg. Thirteen events have radio observations from the Very Large Array, with eight detections and five non-detections. We find that the populations that have radio detections and radio non-detections are indistinct from one another with respect to their optically inferred explosion properties, and there are no statistically significant correlations present between the events’ radio luminosities and optically inferred explosion properties. This provides evidence that the explosion properties derived from optical data alone cannot give inferences about the radio properties of SNe Ic-BL and likely their relativistic jet formation mechanisms.more » « less
-
Abstract We present morphologies of galaxies atz≳ 9 resolved by JWST/NIRCam 2–5μm imaging. Our sample consists of 22 galaxy candidates identified by stringent dropout and photo-zcriteria in GLASS, CEERS, SMACS J0723, and Stephan’s Quintet flanking fields, one of which has been spectroscopically identified atz= 11.44. We perform surface brightness (SB) profile fitting with GALFIT for six bright galaxies with a signal-to-noise ratio = 10–40 on an individual basis and for stacked faint galaxies with secure point-spread functions (PSFs) of the NIRCam real data, carefully evaluating systematics by Monte Carlo simulations. We compare our results with those of previous JWST studies, and confirm that the effective radiireof our measurements are consistent with those of previous measurements atz∼ 9. We obtainre≃ 200–300 pc with the exponential-like profiles, Sérsic indexes ofn≃ 1–1.5, for galaxies atz∼ 12–16, indicating that the relation ofre∝ (1 +z)sfor explains cosmic evolution overz∼ 0–16 for galaxies. One bright (MUV= −21 mag) galaxy atz∼ 12, GL-z12-1, has an extremely compact profile withre= 39 ± 11 pc that is surely extended over the PSF. Even in the case that the GL-z12-1 SB is fit by active galactic nuclei + galaxy composite profiles, the best-fit galaxy component is again compact, pc, which is significantly (>5σ) smaller than the typicalrevalue atz∼ 12. Compared with numerical simulations, we find that such a compact galaxy naturally forms atz≳ 10, and that frequent mergers at the early epoch produce more extended galaxies following there∝ (1 +z)srelation.more » « less
-
Abstract We present a chemodynamical study of the Grus I ultra-faint dwarf galaxy (UFD) from medium-resolution (R∼ 11,000) Magellan/IMACS spectra of its individual member stars. We identify eight confirmed members of Grus I, based on their low metallicities and coherent radial velocities, and four candidate members for which only velocities are derived. In contrast to previous work, we find that Grus I has a very low mean metallicity of 〈[Fe/H]〉 = −2.62 ± 0.11 dex, making it one of the most metal-poor UFDs. Grus I has a systemic radial velocity of −143.5 ± 1.2 km s−1and a velocity dispersion of km s−1, which results in a dynamical mass of M⊙and a mass-to-light ratio ofM/LV= M⊙/L⊙. Under the assumption of dynamical equilibrium, our analysis confirms that Grus I is a dark-matter-dominated UFD (M/L> 80M⊙/L⊙). However, we do not resolve a metallicity dispersion (σ[Fe/H]< 0.44 dex). Our results indicate that Grus I is a fairly typical UFD with parameters that agree with mass–metallicity and metallicity-luminosity trends for faint galaxies. This agreement suggests that Grus I has not lost an especially significant amount of mass from tidal encounters with the Milky Way, in line with its orbital parameters. Intriguingly, Grus I has among the lowest central densities ( M⊙kpc−3) of the UFDs that are not known to be tidally disrupting. Models of the formation and evolution of UFDs will need to explain the diversity of these central densities, in addition to any diversity in the outer regions of these relic galaxies.more » « less
-
Abstract We present the stellar population properties of 69 short gamma-ray burst (GRB) host galaxies, representing the largest uniformly modeled sample to date. Using theProspectorstellar population inference code, we jointly fit photometry and/or spectroscopy of each host galaxy. We find a population median redshift of (68% confidence), including nine photometric redshifts atz≳ 1. We further find a median mass-weighted age oftm= Gyr, stellar mass of log(M*/M⊙) = , star formation rate of SFR = M⊙yr−1, stellar metallicity of log(Z*/Z⊙) = , and dust attenuation of mag (68% confidence). Overall, the majority of short GRB hosts are star-forming (≈84%), with small fractions that are either transitioning (≈6%) or quiescent (≈10%); however, we observe a much larger fraction (≈40%) of quiescent and transitioning hosts atz≲ 0.25, commensurate with galaxy evolution. We find that short GRB hosts populate the star-forming main sequence of normal field galaxies, but do not include as many high-mass galaxies as the general galaxy population, implying that their binary neutron star (BNS) merger progenitors are dependent on a combination of host star formation and stellar mass. The distribution of ages and redshifts implies a broad delay-time distribution, with a fast-merging channel atz> 1 and a decreased neutron star binary formation efficiency from high to low redshifts. If short GRB hosts are representative of BNS merger hosts within the horizon of current gravitational wave detectors, these results can inform future searches for electromagnetic counterparts. All of the data and modeling products are available on the Broadband Repository for Investigating Gamma-ray burst Host Traits website.more » « less