skip to main content

This content will become publicly available on January 9, 2025

Title: Sediment–vegetation interactions determine the fate of fluvial sediment in the upper reaches of a large estuary

Feedbacks between sediment and plants in the submersed aquatic vegetation (SAV) beds of the Susquehanna Flats help modulate sediment delivery into the upper Chesapeake Bay from its major tributary (Susquehanna River). Recent modeling work has shown that SAV can steer the river plume, directly controlling sediment transport and fate. However, transport mechanisms likely differ between flood and non‐flood conditions and depend on event timing. An opportunity to evaluate these insights in the field occurred with several flood events in summer 2018. Sediment and biomass samples were collected after the flood in the large, continuous main SAV bed of the Flats and in smaller patches to the west of the main bed to evaluate the effect of SAV bed size (width). Sediment characteristics (grain size, organic content) and deposition rates were compared to previous observations during non‐flood conditions in the main bed in 2014–2015 and in the smaller patches in 2019. Overall, sediment deposition rates could be predicted by an empirical model including sediment load, vegetation biomass, and SAV bed width, reflecting the role of vegetation in steering the Susquehanna River plume and modulating sediment input to the upper Chesapeake Bay. Understanding spatiotemporal patterns of sedimentation is essential for realistic estimates of sediment and nutrient (especially nitrogen and carbon) storage in freshwater SAV systems, which have not received as much attention as their saltwater counterparts.

more » « less
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography
Medium: X Size: p. 515-523
["p. 515-523"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Rising sea levels and the increased frequency of extreme events put coastal communities at serious risk. In response, shoreline armoring for stabilization has been widespread. However, this solution does not take the ecological aspects of the coasts into account. The “living shoreline” technique includes coastal ecology by incorporating natural habitat features, such as saltmarshes, into shoreline stabilization. However, the impacts of living shorelines on adjacent benthic communities, such as submersed aquatic vegetation (SAV), are not yet clear. In particular, while both marshes and SAV trap the sediment necessary for their resilience to environmental change, the synergies between the communities are not well-understood. To help quantify the ecological and protective (shoreline stabilization) aspects of living shorelines, we presented modeling results using the Delft3D-SWAN system on sediment transport between the created saltmarshes of the living shorelines and adjacent SAV in a subestuary of Chesapeake Bay. We used a double numerical approach to primarily validate deposition measurements made in the field and to further quantify the sediment balance between the two vegetation communities using an idealized model. This model used the same numerical domain with different wave heights, periods, and basin slopes and includes the presence of rip-rap, which is often used together with marsh plantings in living shorelines, to look at the influences of artificial structures on the sediment exchange between the plant communities. The results of this study indicated lower shear stress, lower erosion rates, and higher deposition rates within the SAV bed compared with the scenario with the marsh only, which helped stabilize bottom sediments by making the sediment balance positive in case of moderate wave climate (deposition within the two vegetations higher than the sediment loss). The presence of rip-rap resulted in a positive sediment balance, especially in the case of extreme events, where sediment balance was magnified. Overall, this study concluded that SAV helps stabilize bed level and shoreline, and rip-rap works better with extreme conditions, demonstrating how the right combination of natural and built solutions can work well in terms of ecology and coastal protection. 
    more » « less
  2. Abstract

    Particle size greatly influences the fate of phosphorus (P) in estuaries as P adheres more readily to the larger surface area in smaller sized particles. Here, data on two size fractions of particulate matter, permanently suspended particulate matter (PSPM, ≤40 μm) and resuspended particulate matter (RSPM, >40 μm), from field and controlled laboratory erosion experiments were analyzed to determine their relative contribution to water column P in the mouth of the Susquehanna River in the upper Chesapeake Bay. Based on the composition of sequentially extracted P pools, C and N isotopes, and elemental data, all PSPM and the majority of RSPM are most likely derived from allochthonous sources through river transport. A minor fraction of particulate matter in the water column was derived from sediment resuspension, which had a dominant role above the sediment‐water interface in the river's mouth. The proportion of biologically available P pools to recalcitrant P pools in suspended particulate matter decreased with water column depth, indicating their preferential removal or biological utilization during settling. Suspended particulate matter (SPM) mobilized during sediment erosion experiments, regardless of particle size, was richer in biologically available P pools than SPM in the field, suggesting higher mobility of these pools in the field. These complementary results from field and field‐simulated laboratory erosion experiments provide unique insights into the composition of particulate matter under different hydrodynamic regimes in the river estuary.

    more » « less
  3. Abstract

    Environmental flow releases are an effective tool to meet multiple management objectives, including maintaining river conveyance, restoring naturally functioning riparian plant communities, and controlling invasive species. In this context, predicting plant mortality during floods remains a key area of uncertainty for both river managers and ecologists, particularly with respect to how flood hydraulics and sediment dynamics interact with the plants’ own traits to influence their vulnerability to scour and burial.

    To understand these processes better, we conducted flume experiments to quantify different plant species’ vulnerability to flooding across a range of plant sizes, patch densities, and sediment condition (equilibrium transport versus sediment deficit), using sand‐bed rivers in the U.S. southwest as our reference system. We ran 10 experimental floods in a 0.6 m wide flume using live seedlings of cottonwood and tamarisk, which have contrasting morphologies.

    Sediment supply, plant morphology, and patch composition all had significant impacts on plant vulnerability during floods. Floods under sediment deficit conditions, which typically occur downstream of dams, resulted in bed degradation and a 35% greater risk of plant loss compared to equilibrium sediment conditions. Plants in sparse patches dislodged five times more frequently than in dense patches. Tamarisk plants and patches had greater frontal area, larger basal diameter, longer roots, and lower crown position compared to cottonwood across all seedling heights. These traits were associated with a 75% reduction in tamarisk seedlings’ vulnerability to scour compared to cottonwood.

    Synthesis and applications. Tamarisk's greater survivability helps to explain its vigorous establishment and persistence on regulated rivers where flood magnitudes have been reduced. Furthermore, its documented influence on hydraulics, sediment deposition, and scour patterns in flumes is amplified at larger scales in strongly altered river channels where it has broadly invaded. Efforts to remove riparian vegetation using flow releases to maintain open floodways and/or control the spread of non‐native species will need to consider the target plants’ size, density, and species‐specific traits, in addition to the balance of sediment transport capacity and supply in the river system.

    more » « less
  4. Abstract

    Sediment transport and channel morphology in mountainous hillslope‐coupled streams reflect a mixture of hillslope and channel processes. However, the influence of lithology on channel form and adjustment and sediment transport remains poorly understood. Patterns of channel form, grain size, and transport capacity were investigated in two gravel‐bed streams with contrasting lithology (basalt and sandstone) in the Oregon Coast Range, USA, in a region in which widespread landslides and debris flows occurred in 1996. This information was used to evaluate threshold channel conditions and channel bed adjustment since 1996. Channel geometry, slope, and valley width were measured or extracted from LiDAR and sediment textures were measured in the surface and subsurface. Similar coarsening patterns in the first few kilometres of both streams indicated strong hillslope influences, but subsequent downstream fining was lithology‐dependent. Despite these differences, surface grain size was strongly related to shear stress, such that the ratio of available to critical shear stress for motion of the median surface grain size at bankfull stage was around one over most of the surveyed lengths. This indicated hydraulic sorting of supplied sediment, independent of lithology. We infer a cycle of adjustment to sediment delivered during the 1996 flooding, from threshold conditions, to non‐alluvial characteristics, to threshold conditions in both basins. The sandstone basin can also experience complete depletion of the gravel‐size alluvium to sand size, leading to bedrock exposure because of high diminution rates. Although debris flows being more frequent in a basalt basin, this system will likely display threshold‐like characteristics over a longer period, indicating that the lithologic control on channel adjustment is driven by differences in rock competence that control grain size and available gravel for bed load transport. © 2020 John Wiley & Sons, Ltd.

    more » « less
  5. Abstract

    Mountain rivers often receive sediment in the form of episodic, discrete pulses from a variety of natural and anthropogenic processes. Once emplaced in the river, the movement of this sediment depends on flow, grain size distribution, and channel and network geometry. Here, we simulate downstream bed elevation changes that result from discrete inputs of sediment (∼10,000 m3), differing in volume and grain size distribution, under medium and high flow conditions. We specifically focus on comparing bed responses between mixed and uniform grain size sediment pulses. This work builds on a Lagrangian, bed‐material sediment transport model and applies it to a 27 km reach of the mainstem Nisqually River, Washington, USA. We compare observed bed elevation change and accumulation rates in a downstream lake to simulation results. Then we investigate the magnitude, timing, and persistence of downstream changes due to the introduction of synthetic sediment pulses by comparing the results against a baseline condition (without pulse). Our findings suggest that bed response is primarily influenced by the sediment‐pulse grain size and distribution. Intermediate mixed‐size pulses (∼50% of the median bed gravel size) are likely to have the largest downstream impact because finer sizes translate quickly and coarser sizes (median bed gravel size and larger) disperse slowly. Furthermore, a mixed‐size pulse, with a smaller median grain size than the bed, increases bed mobility more than a uniform‐size pulse. This work has important implications for river management, as it allows us to better understand fluvial geomorphic responses to variations in sediment supply.

    more » « less