The mode of star formation that results in the formation of globular clusters and young massive clusters is difficult to constrain through observations. We present models of massive star cluster formation using the TORCHframework, which uses the Astrophysical MUltipurpose Software Environment (AMUSE) to couple distinct multi-physics codes that handle star formation, stellar evolution and dynamics, radiative transfer, and magnetohydrodynamics. We upgraded TORCHby implementing the N-body code PETAR, thereby enabling TORCHto handle massive clusters forming from 106M⊙clouds with ≥105individual stars. We present results from TORCHsimulations of star clusters forming from 104,  105, and 106M⊙turbulent spherical gas clouds (named M4, M5, M6) of radiusR= 11.7 pc. We find that star formation is highly efficient and becomes more so at a higher cloud mass and surface density. For M4, M5, and M6 with initial surface densities 2.325 × 101,2,3M⊙pc−2, after a free-fall time oftff= 6.7,2.1,0.67 Myr, we find that ∼30%, 40%, and 60% of the cloud mass has formed into stars, respectively. The end of simulation-integrated star formation efficiencies for M4, M5, and M6 areϵ⋆ = M⋆/Mcloud = 36%, 65%, and 85%. Observations of nearby clusters similar in mass and size to M4 have instantaneous star formation efficiencies ofϵinst ≤ 30%, which is slightly lower than the integrated star formation efficiency of M4. The M5 and M6 models represent a different regime of cluster formation that is more appropriate for the conditions in starburst galaxies and gas-rich galaxies at high redshift, and that leads to a significantly higher efficiency of star formation. We argue that young massive clusters build up through short efficient bursts of star formation in regions that are sufficiently dense (Σ ≥ 102M⊙pc−2) and massive (Mcloud≥ 105M⊙). In such environments, stellar feedback from winds and radiation is not strong enough to counteract the gravity from gas and stars until a majority of the gas has formed into stars. 
                        more » 
                        « less   
                    
                            
                            Structural and Dynamical Analysis of the Quiescent Molecular Ridge in the Large Magellanic Cloud
                        
                    
    
            Abstract We present a comparison of low-J13CO and CS observations of four different regions in the LMC—the quiescent Molecular Ridge, 30 Doradus, N159, and N113, all at a resolution of ∼3 pc. The regions 30 Dor, N159, and N113 are actively forming massive stars, while the Molecular Ridge is forming almost no massive stars, despite its large reservoir of molecular gas and proximity to N159 and 30 Dor. We segment the emission from each region into hierarchical structures using dendrograms and analyze the sizes, masses, and line widths of these structures. We find that the Ridge has significantly lower kinetic energy at a given size scale and also lower surface densities than the other regions, resulting in higher virial parameters. This suggests that the Ridge is not forming massive stars as actively as the other regions because it has less dense gas and not because collapse is suppressed by excess kinetic energy. We also find that these physical conditions and energy balance vary significantly within the Ridge and that this variation appears only weakly correlated with distance from sites of massive-star formation such as R136 in 30 Dor, which is ∼1 kpc away. These variations also show only a weak correlation with local star formation activity within the clouds. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10485096
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astronomical Journal
- Volume:
- 164
- Issue:
- 2
- ISSN:
- 0004-6256
- Format(s):
- Medium: X Size: Article No. 64
- Size(s):
- Article No. 64
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Feedback from massive stars plays an important role in the formation of star clusters. Whether a very massive star is born early or late in the cluster formation timeline has profound implications for the star cluster formation and assembly processes. We carry out a controlled experiment to characterize the effects of early-forming massive stars on star cluster formation. We use the star formation software suiteTorch, combining self-gravitating magnetohydrodynamics, ray-tracing radiative transfer,N-body dynamics, and stellar feedback, to model four initially identical 104M⊙giant molecular clouds with a Gaussian density profile peaking at 521.5 cm−3. Using theTorchsoftware suite through theAMUSEframework, we modify three of the models, to ensure that the first star that forms is very massive (50, 70, and 100M⊙). Early-forming massive stars disrupt the natal gas structure, resulting in fast evacuation of the gas from the star-forming region. The star formation rate is suppressed, reducing the total mass of the stars formed. Our fiducial control model, without an early massive star, has a larger star formation rate and total efficiency by up to a factor of 3, and a higher average star formation efficiency per freefall time by up to a factor of 7. Early-forming massive stars promote the buildup of spatially separate and gravitationally unbound subclusters, while the control model forms a single massive cluster.more » « less
- 
            Abstract The Tarantula Nebula (30 Doradus, 30 Dor) is the most important star-forming complex in the Local Group, offering a microscope on starburst astrophysics. At its heart lies the exceptionally rich young stellar cluster R136, containing the most massive stars known. Stellar winds and supernovae have carved 30 Dor into an amazing display of arcs, pillars, and bubbles. We present first results and advanced data-processing products from the 2 Ms Chandra X-ray Visionary Project, “The Tarantula—Revealed by X-rays” (T-ReX). The 3615 point sources in the T-ReX catalog include massive stars, compact objects, binaries, bright pre-main-sequence stars, and compact young stellar (sub)clusters in 30 Dor. After removing point sources and excluding the exceptionally bright supernova remnant N157B (30 Dor B), the global diffuse X-ray maps reveal hot plasma structures resolved at 1–10 pc scales, with an absorption-corrected total-band (0.5–7 keV) X-ray luminosity of 2.110 × 1037erg s−1. Spatially resolved spectral modeling provides evidence for emission lines enhanced by charge-exchange processes at the interfaces. We identify a candidate for the oldest X-ray pulsar detected to date in 30 Dor, PSR J0538-6902, inside a newly resolved arcuate X-ray wind nebula, the Manta Ray. The long temporal baseline of T-ReX allowed monitoring of dozens of massive stars, several showing periodic variability tied to binary orbital periods, and captured strong flares from at least three low-mass Galactic foreground stars.more » « less
- 
            Abstract The dust grain size distribution (GSD) likely varies significantly across star-forming environments in the Universe, but its impact on star formation remains unclear. This ambiguity arises because the GSD interacts nonlinearly with processes like heating, cooling, radiation, and chemistry, which have competing effects and varying environmental dependencies. Processes such as grain coagulation, expected to be efficient in dense star-forming regions, reduce the abundance of small grains and increase that of larger grains. Motivated by this, we investigate the effects of similar GSD variations on the thermochemistry and evolution of giant molecular clouds (GMCs) using magnetohydrodynamic simulations spanning a range of cloud masses and grain sizes, which explicitly incorporate the dynamics of dust grains within the full-physics framework of the STARFORGE project. We find that grain size variations significantly alter GMC thermochemistry: the leading-order effect is that larger grains, under fixed dust mass, GSD dynamic range, and dust-to-gas ratio, result in lower dust opacities. This reduced opacity permits interstellar radiation field and internal radiation photons to penetrate more deeply. This leads to rapid gas heating and inhibited star formation. Star formation efficiency is highly sensitive to grain size, with an order-of-magnitude reduction when grain size dynamic range increases from 10−3–0.1μm to 0.1–10μm. Additionally, warmer gas suppresses low-mass star formation, and decreased opacities result in a greater proportion of gas in diffuse ionized structures.more » « less
- 
            Abstract We study the evolution of populations of binary stars within massive cluster-forming regions. We simulate the formation of young massive star clusters within giant molecular clouds with masses ranging from 2 × 104to 3.2 × 105M⊙. We use Torch, which couples stellar dynamics, magnetohydrodynamics, star and binary formation, stellar evolution, and stellar feedback through the Amuseframework. We find that the binary fraction decreases during cluster formation at all molecular cloud masses. The binaries’ orbital properties also change, with stronger and quicker changes in denser, more massive clouds. Most of the changes we see can be attributed to the disruption of binaries wider than 100 au, although the close binary fraction also decreases in the densest cluster-forming region. The binary fraction for O stars remains above 90%, but exchanges and dynamical hardening are ubiquitous, indicating that O stars undergo frequent few-body interactions early during the cluster formation process. Changes to the populations of binaries are a by-product of hierarchical cluster assembly: most changes to the binary population take place when the star formation rate is high, and there are frequent mergers between subclusters in the cluster-forming region. A universal primordial binary distribution based on observed inner companions in the Galactic field is consistent with the binary populations of young clusters with resolved stellar populations, and the scatter between clusters of similar masses could be explained by differences in their formation history.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
