skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modeling Stellar Surface Features on a Subgiant Star with an M-dwarf Companion
Abstract Understanding magnetic activity on the surface of stars other than the Sun is important for exoplanet analyses to properly characterize an exoplanet’s atmosphere and to further characterize stellar activity on a wide range of stars. Modeling stellar surface features of a variety of spectral types and rotation rates is key to understanding the magnetic activity of these stars. Using data from Kepler, we use the starspot modeling program STarSPot (STSP) to measure the position and size of spots for KOI-340, which is an eclipsing binary consisting of a subgiant star (Teff= 5593 ± 27 K,R= 1.98 ± 0.05R) with an M-dwarf companion (M= 0.214 ± 0.006M).STSPuses a novel technique to measure the spot positions and radii by using the transiting secondary to study and model individual active regions on the stellar surface using high-precision photometry. We find that the average size of spot features on KOI-340's primary is ∼10% the radius of the star, i.e., two times larger than the mean size of solar-maximum sunspots. The spots on KOI-340 are present at every longitude and show possible signs of differential rotation. The minimum fractional spotted area of KOI-340's primary is 2 2 + 12 % , while the spotted area of the Sun is at most 0.2%. One transit of KOI-340 shows a signal in the transit consistent with a plage; this plage occurs right before a dark spot, indicating that the plage and spot might be colocated on the surface of the star.  more » « less
Award ID(s):
1910954
PAR ID:
10485110
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astronomical Journal
Volume:
164
Issue:
1
ISSN:
0004-6256
Format(s):
Medium: X Size: Article No. 14
Size(s):
Article No. 14
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Using simultaneous multi-filter observations during the transit of an exoplanet around a K dwarf star, we determine the temperature of a starspot through modeling the radius and position with wavelength-dependent spot contrasts. We model the spot using the starspot modeling program STarSPot (STSP), which uses the transiting companion as a knife-edge probe of the stellar surface. The contrast of the spot, i.e., the ratio of the integrated flux of a darker spot region to the star's photosphere, is calculated for a range of filters and spot temperatures. We demonstrate this technique using simulated data of HAT-P-11, a K dwarf (Teff= 4780 K) with well-modeled starspot properties for which we obtained simultaneous multi-filter transits using Las Cumbres Observatory's MuSCAT3 instrument on the 2m telescope at Haleakala Observatory, which allows for simultaneous, multi-filter, diffuser-assisted high-precision photometry. We determine the average (i.e., a combination of penumbra and umbra) spot temperature for HAT-P-11's spot complexes is 4500 K ± 100 K using this technique. We also find for our set of filters that comparing the SDSS g and i filters maximizes the signal difference caused by a large spot in the transit. Thus, this technique allows for the determination of the average spot temperature using only one spot occultation in transit and can provide simultaneous information on the spot temperature and spot properties. 
    more » « less
  2. Abstract We perform an in-depth analysis of the recently validated TOI-3884 system, an M4-dwarf star with a transiting super-Neptune. Using high-precision light curves obtained with the 3.5 m Apache Point Observatory and radial velocity observations with the Habitable-zone Planet Finder, we derive a planetary mass of 32.6 7.4 + 7.3 M and radius of 6.4 ± 0.2R. We detect a distinct starspot crossing event occurring just after ingress and spanning half the transit for every transit. We determine this spot feature to be wavelength dependent with the amplitude and duration evolving slightly over time. Best-fit starspot models show that TOI-3884b possesses a misaligned (λ= 75° ± 10°) orbit that crosses a giant pole spot. This system presents a rare opportunity for studies into the nature of both a misaligned super-Neptune and spot evolution on an active mid-M dwarf. 
    more » « less
  3. Abstract Stellar positions and velocities from Gaia are yielding a new view of open cluster dispersal. Here we present an analysis of a group of stars spanning Cepheus (l= 100°) to Hercules (l= 40°), hereafter the Cep-Her complex. The group includes four Kepler objects of interest: Kepler-1643 b (Rp= 2.32 ± 0.13R,P= 5.3 days), KOI-7368 b (Rp= 2.22 ± 0.12R,P= 6.8 days), KOI-7913 Ab (Rp= 2.34 ± 0.18R,P= 24.2 days), and Kepler-1627 Ab (Rp= 3.85 ± 0.11R,P= 7.2 days). The latter Neptune-sized planet is in part of the Cep-Her complex called theδLyr cluster. Here we focus on the former three systems, which are in other regions of the association. Based on kinematic evidence from Gaia, stellar rotation periods from TESS, and spectroscopy, these three objects are also ≈40 million years (Myr) old. More specifically, we find that Kepler-1643 is 46 7 + 9 Myr old, based on its membership in a dense subcluster of the complex called RSG-5. KOI-7368 and KOI-7913 are 36 8 + 10 Myr old, and are in a diffuse region that we call CH-2. Based on the transit shapes and high-resolution imaging, all three objects are most likely planets, with false-positive probabilities of 6 × 10−9, 4 × 10−3, and 1 × 10−4for Kepler-1643, KOI-7368, and KOI-7913, respectively. These planets demonstrate that mini-Neptunes with sizes of ≈2 Earth radii exist at ages of 40 Myr. 
    more » « less
  4. Abstract We present the stellar population properties of 69 short gamma-ray burst (GRB) host galaxies, representing the largest uniformly modeled sample to date. Using theProspectorstellar population inference code, we jointly fit photometry and/or spectroscopy of each host galaxy. We find a population median redshift of z = 0.64 0.32 + 0.83 (68% confidence), including nine photometric redshifts atz≳ 1. We further find a median mass-weighted age oftm= 0.8 0.53 + 2.71 Gyr, stellar mass of log(M*/M) = 9.69 0.65 + 0.75 , star formation rate of SFR = 1.44 1.35 + 9.37 Myr−1, stellar metallicity of log(Z*/Z) = 0.38 0.42 + 0.44 , and dust attenuation of A V = 0.43 0.36 + 0.85 mag (68% confidence). Overall, the majority of short GRB hosts are star-forming (≈84%), with small fractions that are either transitioning (≈6%) or quiescent (≈10%); however, we observe a much larger fraction (≈40%) of quiescent and transitioning hosts atz≲ 0.25, commensurate with galaxy evolution. We find that short GRB hosts populate the star-forming main sequence of normal field galaxies, but do not include as many high-mass galaxies as the general galaxy population, implying that their binary neutron star (BNS) merger progenitors are dependent on a combination of host star formation and stellar mass. The distribution of ages and redshifts implies a broad delay-time distribution, with a fast-merging channel atz> 1 and a decreased neutron star binary formation efficiency from high to low redshifts. If short GRB hosts are representative of BNS merger hosts within the horizon of current gravitational wave detectors, these results can inform future searches for electromagnetic counterparts. All of the data and modeling products are available on the Broadband Repository for Investigating Gamma-ray burst Host Traits website. 
    more » « less
  5. Abstract Gravitational lenses can magnify distant galaxies, allowing us to discover and characterize the stellar populations of intrinsically faint, quiescent galaxies that are otherwise extremely difficult to directly observe at high redshift from ground-based telescopes. Here, we present the spectral analysis of two lensed, quiescent galaxies atz≳ 1 discovered by theASTRO 3D Galaxy Evolution with Lensessurvey:AGEL1323 (M*∼ 1011.1M,z= 1.016,μ∼ 14.6) andAGEL0014 (M*∼ 1011.5M,z= 1.374,μ∼ 4.3). We measured the age, [Fe/H], and [Mg/Fe] of the two lensed galaxies using deep, rest-frame-optical spectra (S/N ≳40 Å−1) obtained on the Keck I telescope. The ages ofAGEL1323 andAGEL0014 are 5.6 0.8 + 0.8 Gyr and 3.1 0.3 + 0.8 Gyr, respectively, indicating that most of the stars in the galaxies were formed less than 2 Gyr after the Big Bang. Compared to nearby quiescent galaxies of similar masses, the lensed galaxies have lower [Fe/H] and [Mg/H]. Surprisingly, the two galaxies have comparable [Mg/Fe] to similar-mass galaxies at lower redshifts, despite their old ages. Using a simple analytic chemical evolution model connecting the instantaneously recycled element Mg with the mass-loading factors of outflows averaged over the entire star formation history, we found that the lensed galaxies may have experienced enhanced outflows during their star formation compared to lower-redshift galaxies, which may explain why they quenched early. 
    more » « less