skip to main content


This content will become publicly available on October 1, 2024

Title: Comprehensive Social Trait Judgments From Faces in Autism Spectrum Disorder

Processing social information from faces is difficult for individuals with autism spectrum disorder (ASD). However, it remains unclear whether individuals with ASD make high-level social trait judgments from faces in the same way as neurotypical individuals. Here, we comprehensively addressed this question using naturalistic face images and representatively sampled traits. Despite similar underlying dimensional structures across traits, online adult participants with self-reported ASD showed different judgments and reduced specificity within each trait compared with neurotypical individuals. Deep neural networks revealed that these group differences were driven by specific types of faces and differential utilization of features within a face. Our results were replicated in well-characterized in-lab participants and partially generalized to more controlled face images (a preregistered study). By investigating social trait judgments in a broader population, including individuals with neurodevelopmental variations, we found important theoretical implications for the fundamental dimensions, variations, and potential behavioral consequences of social cognition.

 
more » « less
Award ID(s):
1945230
NSF-PAR ID:
10485147
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Sage Journals
Date Published:
Journal Name:
Psychological Science
Volume:
34
Issue:
10
ISSN:
0956-7976
Page Range / eLocation ID:
1121 to 1145
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Autism spectrum disorder (ASD) is characterized by difficulties in social processes, interactions, and communication. Yet, the neurocognitive bases underlying these difficulties are unclear. Here, we triangulated the ‘trans-diagnostic’ approach to personality, social trait judgments of faces, and neurophysiology to investigate (1) the relative position of autistic traits in a comprehensive social-affective personality space, and (2) the distinct associations between the social-affective personality dimensions and social trait judgment from faces in individuals with ASD and neurotypical individuals. We collected personality and facial judgment data from a large sample of online participants (N = 89 self-identified ASD;N = 307 neurotypical controls). Factor analysis with 33 subscales of 10 social-affective personality questionnaires identified a 4-dimensional personality space. This analysis revealed that ASD and control participants did not differ significantly along the personality dimensions of empathy and prosociality, antisociality, or social agreeableness. However, the ASD participants exhibited a weaker association between prosocial personality dimensions and judgments of facial trustworthiness and warmth than the control participants. Neurophysiological data also indicated that ASD participants had a weaker association with neuronal representations for trustworthiness and warmth from faces. These results suggest that the atypical association between social-affective personality and social trait judgment from faces may contribute to the social and affective difficulties associated with ASD.

     
    more » « less
  2. Autism spectrum disorder (ASD) is a neurodevelopmental syndrome characterized by impairments in social perception and communication. Growing evidence suggests that the relationship between deficits in social perception and ASD may extend into the neurotypical population. In electroencephalography (EEG), high autism-spectrum traits in both ASD and neurotypical samples are associated with changes to the mu rhythm, an alpha-band (8–12 Hz) oscillation measured over sensorimotor cortex which typically shows reductions in spectral power during both one’s own movements and observation of others’ actions. This mu suppression is thought to reflect integration of perceptual and motor representations for understanding of others’ mental states, which may be disrupted in individuals with autism-spectrum traits. However, because spectral power is usually quantified at the group level, it has limited usefulness for characterizing individual variation in the mu rhythm, particularly with respect to autism-spectrum traits. Instead, individual peak frequency may provide a better measure of mu rhythm variability across participants. Previous developmental studies have linked ASD to slowing of individual peak frequency in the alpha band, or peak alpha frequency (PAF), predominantly associated with selective attention. Yet individual variability in the peak mu frequency (PMF) remains largely unexplored, particularly with respect to autism-spectrum traits. Here we quantified peak frequency of occipitoparietal alpha and sensorimotor mu rhythms across neurotypical individuals as a function of autism-spectrum traits. High-density 128-channel EEG data were collected from 60 participants while they completed two tasks previously reported to reliably index the sensorimotor mu rhythm: motor execution (bimanual finger tapping) and action observation (viewing of whole-body human movements). We found that individual measurement in the peak oscillatory frequency of the mu rhythm was highly reliable within participants, was not driven by resting vs. task states, and showed good correlation across action execution and observation tasks. Within our neurotypical sample, higher autism-spectrum traits were associated with slowing of the PMF, as predicted. This effect was not likely explained by volume conduction of the occipitoparietal PAF associated with attention. Together, these data support individual peak oscillatory alpha-band frequency as a correlate of autism-spectrum traits, warranting further research with larger samples and clinical populations. 
    more » « less
  3. When seeing a face, people form judgments of perceptually ambiguous social categories (PASCs), for example, gun-owners, gay people, or alcoholics. Previous research has assumed that PASC judgments arise from the statistical learning of facial features in social encounters. We propose, instead, that perceivers associate facial features with traits (e.g., extroverted) and then infer PASC membership via learned stereotype associations with those traits. Across three studies, we show that when any PASC is more stereotypically associated with a trait (e.g., alcoholics = extroverted), perceivers are more likely to infer PASC membership from faces conveying that trait (Study 1). Furthermore, we demonstrate that individual differences in trait–PASC stereotypes predict face-based judgments of PASC membership (Study 2) and have a causal role in these judgments (Study 3). Together, our findings imply that people can form any number of PASC judgments from facial appearance alone by drawing on their learned social–conceptual associations.

     
    more » « less
  4. Abstract

    Faces are salient social stimuli that attract a stereotypical pattern of eye movement. The human amygdala and hippocampus are involved in various aspects of face processing; however, it remains unclear how they encode the content of fixations when viewing faces. To answer this question, we employed single-neuron recordings with simultaneous eye tracking when participants viewed natural face stimuli. We found a class of neurons in the human amygdala and hippocampus that encoded salient facial features such as the eyes and mouth. With a control experiment using non-face stimuli, we further showed that feature selectivity was specific to faces. We also found another population of neurons that differentiated saccades to the eyes vs. the mouth. Population decoding confirmed our results and further revealed the temporal dynamics of face feature coding. Interestingly, we found that the amygdala and hippocampus played different roles in encoding facial features. Lastly, we revealed two functional roles of feature-selective neurons: 1) they encoded the salient region for face recognition, and 2) they were related to perceived social trait judgments. Together, our results link eye movement with neural face processing and provide important mechanistic insights for human face perception.

     
    more » « less
  5. Abstract

    Social attention involves selectively attending to and encoding socially relevant information. We investigated the neural systems underlying the wide range of variability in both social attention ability and social experience in a neurotypical sample. Participants performed a selective social attention task, while undergoing fMRI and completed self-report measures of social functioning. Using connectome-based predictive modeling, we demonstrated that individual differences in whole-brain functional connectivity patterns during selective attention to faces predicted task performance. Individuals with more cerebellar-occipital connectivity performed better on the social attention task, suggesting more efficient social information processing. Then, we estimated latent communities of autistic and socially anxious traits using exploratory graph analysis to decompose heterogeneity in social functioning between individuals. Connectivity strength within the identified social attention network was associated with social skills, such that more temporal-parietal connectivity predicted fewer challenges with social communication and interaction. These findings demonstrate that individual differences in functional connectivity strength during a selective social attention task are related to varying levels of self-reported social skill.

     
    more » « less