skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Influence of aluminum incorporation and aqueous conditions on metal ion release of high-Ni transition metal oxide nanomaterials
Developing a materials perspective of how to control the degradation and negative impact of complex metal oxides requires an integrated understanding of how these nanomaterials transform in the environment and interact with biological systems. Doping with aluminum is known to stabilize oxide materials, but has not been assessed cohesively from synthesis to environmental fate and biological impact. In the present study, the influence of aluminum doping on metal ion release from transition metal oxides was investigated by comparing aqueous transformations of lithium nickel cobalt aluminum oxide (LiNi0.82Co0.15Al0.03O2; NCA) and lithium nickel cobalt oxide (LiNi0.80Co0.20O2; NC) nanoparticles and by calculating the energetics of metal release using a density functional theory (DFT) and thermodynamics method. Two model environmental organisms were used to assess biological impact, and metal ion release was compared for NCA and NC nanoparticles incubated in their respective growth media: moderately hard reconstituted water (MHRW) for the freshwater invertebrate Daphnia magna (D. magna) and minimal growth medium for the Gram-negative bacterium Shewanella oneidensis MR-1 (S. oneidensis). The amount of metal ions released was reduced for NCA compared to NC in MHRW, which correlated to changes in the modeled energetics of release upon Al substitution in the lattice. In minimal medium, metal ion release was approximately an order of magnitude higher compared to MHRW and was similar to the stoichiometry of the bulk nanoparticles for both NCA and NC. Interpretation of the release profiles and modeling indicated that the increase in total metal ion release and the reduced influence of Al doping arises from lactate complexation of metal ions in solution. The relative biological impacts of NC and NCA exposure for both S. oneidensis and D. magna were consistent with the metal release trends observed for minimal medium and MHRW, respectively. Together, these results demonstrate how a combined experimental and computational approach provides valuable insight into the aqueous transformations and biological impacts of complex metal oxide nanoparticles.  more » « less
Award ID(s):
2001611
PAR ID:
10485226
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
The Royal Society of Chemistry
Date Published:
Journal Name:
Environmental Science: Nano
ISSN:
2051-8153
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lithium intercalation compounds, such as the complex metal oxide, lithium nickel manganese cobalt oxide (LiNi x Mn y Co 1−x−y O 2 , herein referred to as NMC), have demonstrated their utility as energy storage materials. In response to recent concerns about the global supply of cobalt, industrially synthesized NMCs are shifting toward using NMC compositions with enriched nickel content. However, nickel is one of the more toxic components of NMC materials, meriting investigation of the toxicity of these materials on environmentally relevant organisms. Herein, the toxicity of both nanoscale and microscale Ni-enriched NMCs to the bacterium, Shewanella oneidensis MR-1, and the zooplankton, Daphnia magna , was assessed. Unexpectedly, for the bacteria, all NMC materials exhibited similar toxicity when used at equal surface area-based doses, despite the different nickel content in each. Material dissolution to toxic species, namely nickel and cobalt ions, was therefore modelled using a combined density functional theory and thermodynamics approach, which showed an increase in material stability due to the Ni-enriched material containing nickel with an oxidation state >2. The increased stability of this material means that similar dissolution is expected between Ni-enriched NMC and equistoichiometric NMC, which is what was found in experiments. For S. oneidensis , the toxicity of the released ions recapitulated toxicity of NMC nanoparticles. For D. magna , nickel enrichment increased the observed toxicity of NMC, but this toxicity was not due to ion release. Association of the NMC was observed with both S. oneidensis and D. magna. This work demonstrates that for organisms where the major mode of toxicity is based on ion release, including more nickel in NMC does not impact toxicity due to increased particle stability; however, for organisms where the core composition dictates the toxicity, including more nickel in the redesign strategy may lead to greater toxicity due to nanoparticle-specific impacts on the organism. 
    more » « less
  2. Lithium nickel manganese cobalt oxide (Li x Ni y Mn z Co 1−y−z O 2 , 0 < x , y , z < 1, also known as NMC) is a class of cathode materials used in lithium ion batteries. Despite the increasing use of NMC in nanoparticle form for next-generation energy storage applications, the potential environmental impact of released nanoscale NMC is not well characterized. Previously, we showed that the released nickel and cobalt ions from nanoscale Li 1/3 Ni 1/3 Mn 1/3 Co 1/3 O 2 were largely responsible for impacting the growth and survival of the Gram-negative bacterium Shewanella oneidensis MR-1 (M. N. Hang et al. , Chem. Mater. , 2016, 28 , 1092). Here, we show the first steps toward material redesign of NMC to mitigate its biological impact and to determine how the chemical composition of NMC can significantly alter the biological impact on S. oneidensis . We first synthesized NMC with various stoichiometries, with an aim to reduce the Ni and Co content: Li 0.68 Ni 0.31 Mn 0.39 Co 0.30 O 2 , Li 0.61 Ni 0.23 Mn 0.55 Co 0.22 O 2 , and Li 0.52 Ni 0.14 Mn 0.72 Co 0.14 O 2 . Then, S. oneidensis were exposed to 5 mg L −1 of these NMC formulations, and the impact on bacterial oxygen consumption was analyzed. Measurements of the NMC composition, by X-ray photoelectron spectroscopy, and composition of the nanoparticle suspension aqueous phase, by inductively coupled plasma-optical emission spectroscopy, showed the release of Li, Ni, Mn, and Co ions. Bacterial inhibition due to redesigned NMC exposure can be ascribed largely to the impact of ionic metal species released from the NMC, most notably Ni and Co. Tuning the NMC stoichiometry to have increased Mn at the expense of Ni and Co showed lowered, but not completely mitigated, biological impact. This study reveals that the chemical composition of NMC nanomaterials is an important parameter to consider in sustainable material design and usage. 
    more » « less
  3. Engineered nanoparticles are incorporated into numerous emerging technologies because of their unique physical and chemical properties. Many of these properties facilitate novel interactions, including both intentional and accidental effects on biological systems. Silver-containing particles are widely used as antimicrobial agents and recent evidence indicates that bacteria rapidly become resistant to these nanoparticles. Much less studied is the chronic exposure of bacteria to particles that were not designed to interact with microorganisms. For example, previous work has demonstrated that the lithium intercalated battery cathode nanosheet, nickel manganese cobalt oxide (NMC), is cytotoxic and causes a significant delay in growth of Shewanella oneidensis MR-1 upon acute exposure. Here, we report that S. oneidensis MR-1 rapidly adapts to chronic NMC exposure and is subsequently able to survive in much higher concentrations of these particles, providing the first evidence of permanent bacterial resistance following exposure to nanoparticles that were not intended as antibacterial agents. We also found that when NMC-adapted bacteria were subjected to only the metal ions released from this material, their specific growth rates were higher than when exposed to the nanoparticle. As such, we provide here the first demonstration of bacterial resistance to complex metal oxide nanoparticles with an adaptation mechanism that cannot be fully explained by multi-metal adaptation. Importantly, this adaptation persists even after the organism has been grown in pristine media for multiple generations, indicating that S. oneidensis MR-1 has developed permanent resistance to NMC. 
    more » « less
  4. null (Ed.)
    Among high-valence metal oxides, LiCoO 2 and related materials are of environmental importance because of the rapidly increasing use of these materials as cathodes in lithium ion batteries. Understanding the impact of these materials on aqueous environments relies on understanding their redox chemistry because Co release is dependent on oxidation state. Despite the critical role that redox chemistry plays in cellular homeostasis, the influence of specific biologically relevant electron transporters such as nicotinamide adenine dinucleotide (NADH) and glutathione (GSH) on the transformation of engineered nanoparticles has not been widely considered previously. Here we report an investigation of the interaction of LiCoO 2 nanoparticles with NADH and GSH. Measurements of Co release using inductively coupled plasma-mass spectrometry (ICP-MS) show that exposing LiCoO 2 nanoparticles to either NADH or GSH increases solubilization of cobalt, while corresponding spectroscopic measurements show that NADH is concurrently oxidized to NAD + . To demonstrate that these effects are a consequence the high-valence Co(III) inLiCoO 2 nanoparticles, we performed control experiments using Co(II)-containing Co(OH) 2 and LiCoPO 4 , and dissolved Co 2+ /Li + ions. Additional experiments using molecules of similar structure to NADH and GSH, but that are not reducing agents, confirm that these transformations are driven by redox reactions and not by chelation effects. Our data show that interaction of LiCoO 2 with NADH and GSH induces release Co 2+ ions and alters the redox state of these biologically important transporters. Observation of NADH binding to LiCoO 2 using x-ray photoelectron spectroscopy (XPS) suggests a surface catalyzed reaction. The reciprocal reduction of LiCoO 2 to enable release of Co 2+ and corresponding oxidation of NADH and GSH as model redox-active biomolecules has implications for understanding the biological impacts of high-valence metal oxide nanomaterials. 
    more » « less
  5. High-valent metal oxides such as LiCoO2 and related materials are of increasing environmental concern due to the large-scale use in lithium-ion batteries and potential for metal ion release into aqueous systems. A key aspect of the environmental chemistry of these materials is the potential role redox chemistry plays in their transformations as well as their influence on the surrounding environment (i.e., biomolecules, organisms etc.). In recent work, we showed that LiCoO2(a common lithium-ion battery cathode material) oxidizes nicotinamide adenine dinucleotide (NADH), an essential molecule for electron transport, and enhances Co release from LiCoO2. In the present work, we investigated the mechanism of interaction by examining the role of the ribose, phosphate, adenosine, and the nicotinamide components of NADH in the transformation of LiCoO2 nanoparticles. To build an understanding of the interaction mechanism, we used fluorescence spectroscopy to measure the changes in redox state and inductively coupled plasma-mass spectrometry (ICP-MS) to measure the changes in dissolved Co. Our results reveal the importance of surface binding, via the phosphate functionality, in initiating the redox transformation of both the LiCoO2 and the NADH. Observations from X-ray photoelectron spectroscopy (XPS) data show that molecules containing phosphate were bound to the surface of the nanoparticles and those without that functionality were not. We further established the generality of the results with LiCoO2 by examining other high-valent transition metal oxides. This surface binding effect has implications for understanding how other phosphorylated species can be transformed directly in the presence of high-valent metal oxide nanomaterials. 
    more » « less