skip to main content


This content will become publicly available on January 1, 2025

Title: The effect of nanoparticle surface charge on freshwater algae growth, reproduction, and lipid production
Surface charge is a key characteristic of nanoparticles which has great potential to impact the interactions of nanoparticles and biological systems. Understanding the role charge plays in these interactions is key to determining the ecological risks of nanoparticle exposure and informing sustainable nanoparticle design. In this study, the model freshwater algae Raphidocelis subcapitata was exposed to carbon dots (CDs) functionalized with polymers to have positive, negative, or neutral surface charges to examine the impact of nanoparticle surface charge on nano-algae interactions. Traditional toxicological endpoints of survival and growth inhibition were measured. Additionally, morphological impacts on whole cells, individual organelles, and cellular components were quantified using high-content fluorescence microscopy, demonstrating one of the first uses of high-content imaging in microalgae. Results indicate that PEI functionalized, positively charged CDs are most toxic to green algae (EC50 42.306 μg/L), but that CDs with negative charge induce sublethal impacts on algae. PEI-CD toxicity is hypothesized to be related to electrostatic interactions between CDs and the algal cell wall, which lead to significant cell aggregation. Interestingly, morphological data suggests that exposure to both positively and negatively charged CDs leads to increased neutral lipid droplet formation, a possible indicator of nutrient stress. Further investigation of the mechanisms underlying impacts of nanoparticle surface charge on algae biology can lead to more sustainable nanoparticle design and environmental protections.  more » « less
Award ID(s):
2001611
PAR ID:
10485228
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
The Royal Society of Chemistry
Date Published:
Journal Name:
Environmental Science: Nano
ISSN:
2051-8153
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A lack of mechanistic understanding of nanomaterial interactions with plants and algae cell walls limits the advancement of nanotechnology-based tools for sustainable agriculture. We systematically investigated the influence of nanoparticle charge on the interactions with model cell wall surfaces built with cellulose or pectin and performed a comparative analysis with native cell walls of Arabidopsis plants and green algae (Choleochaete). The high affinity of positively charged carbon dots (CDs) (46.0 ± 3.3 mV, 4.3 ± 1.5 nm) to both model and native cell walls was dominated by the strong ionic bonding between the surface amine groups of CDs and the carboxyl groups of pectin. In contrast, these CDs formed weaker hydrogen bonding with the hydroxyl groups of cellulose model surfaces. The CDs of similar size with negative (−46.2 ± 1.1 mV, 6.6 ± 3.8 nm) or neutral (−8.6 ± 1.3 mV, 4.3 ± 1.9 nm) ζ-potentials exhibited negligible interactions with cell walls. Real-time monitoring of CD interactions with model pectin cell walls indicated higher absorption efficiency (3.4 ± 1.3 10−9) and acoustic mass density (313.3 ± 63.3 ng cm–2) for the positively charged CDs than negative and neutral counterparts (p < 0.001 and p < 0.01, respectively). The surface charge density of the positively charged CDs significantly enhanced these electrostatic interactions with cell walls, pointing to approaches to control nanoparticle binding to plant biosurfaces. Ca2+-induced cross-linking of pectin affected the initial absorption efficiency of the positively charged CD on cell wall surfaces (∼3.75 times lower) but not the accumulation of the nanoparticles on cell wall surfaces. This study developed model biosurfaces for elucidating fundamental interactions of nanomaterials with cell walls, a main barrier for nanomaterial translocation in plants and algae in the environment, and for the advancement of nanoenabled agriculture with a reduced environmental impact. 
    more » « less
  2. Abstract Background

    Agriculture faces significant global challenges including climate change and an increasing food demand due to a growing population. Addressing these challenges will require the adoption of transformative innovations into biotechnology practice, such as nanotechnology. Recently, nanomaterials have emerged as unmatched tools for their use as biosensors, or as biomolecule delivery vehicles. Despite their increasingly prolific use, plant-nanomaterial interactions remain poorly characterized, drawing into question the breadth of their utility and their broader environmental compatibility.

    Results

    Herein, we characterize the response ofArabidopsis thalianato single walled carbon nanotube (SWNT) exposure with two different surface chemistries commonly used for biosensing and nucleic acid delivery: oligonucleotide adsorbed-pristine SWNTs, and polyethyleneimine-SWNTs loaded with plasmid DNA (PEI-SWNTs), both introduced by leaf infiltration. We observed that pristine SWNTs elicit a mild stress response almost undistinguishable from the infiltration process, indicating that these nanomaterials are well-tolerated by the plant. However, PEI-SWNTs induce a much larger transcriptional reprogramming that involves stress, immunity, and senescence responses. PEI-SWNT-induced transcriptional profile is very similar to that of mutant plants displaying a constitutive immune response or treated with stress-priming agrochemicals. We selected molecular markers from our transcriptomic analysis and identified PEI as the main cause of this adverse reaction. We show that PEI-SWNT response is concentration-dependent and, when persistent over time, leads to cell death. We probed a panel of PEI variant-functionalized SWNTs across two plant species and identified biocompatible SWNT surface functionalizations.

    Conclusions

    While SWNTs themselves are well tolerated by plants, SWNTs surface-functionalized with positively charged polymers become toxic and produce cell death. We use molecular markers to identify more biocompatible SWNT formulations. Our results highlight the importance of nanoparticle surface chemistry on their biocompatibility and will facilitate the use of functionalized nanomaterials for agricultural improvement.

    Graphical Abstract 
    more » « less
  3. The molecular features that dictate interactions between functionalized nanoparticles and biomolecules are not well understood. This is in part because for highly charged nanoparticles in solution, establishing a clear connection between the molecular features of surface ligands and common experimental observables such as ζ potential requires going beyond the classical models based on continuum and mean field models. Motivated by these considerations, molecular dynamics simulations are used to probe the electrostatic properties of functionalized gold nanoparticles and their interaction with a charged peptide in salt solutions. Counterions are observed to screen the bare ligand charge to a significant degree even at the moderate salt concentration of 50 mM. As a result, the apparent charge density and ζ potential are largely insensitive to the bare ligand charge densities, which fall in the range of ligand densities typically measured experimentally for gold nanoparticles. While this screening effect was predicted by classical models such as the Manning condensation theory, the magnitudes of the apparent surface charge from microscopic simulations and mean-field models are significantly different. Moreover, our simulations found that the chemical features of the surface ligand ( e.g. , primary vs. quaternary amines, heterogeneous ligand lengths) modulate the interfacial ion and water distributions and therefore the interfacial potential. The importance of interfacial water is further highlighted by the observation that introducing a fraction of hydrophobic ligands enhances the strength of electrostatic binding of the charged peptide. Finally, the simulations highlight that the electric double layer is perturbed upon binding interactions. As a result, it is the bare charge density rather than the apparent charge density or ζ potential that better correlates with binding affinity of the nanoparticle to a charged peptide. Overall, our study highlights the importance of molecular features of the nanoparticle/water interface and underscores a set of design rules for the modulation of electrostatic driven interactions at nano/bio interfaces. 
    more » « less
  4. Chloroplast are sites of photosynthesis that have been bioengineered to produce food, biopharmaceuticals, and biomaterials. Current approaches for altering the chloroplast genome rely on inefficient DNA delivery methods, leading to low chloroplast transformation efficiency rates. For algal chloroplasts, there is no modifiable, customizable, and efficient in situ DNA delivery chassis. Herein, we investigated polyethylenimine-coated single-walled carbon nanotubes (PEI-SWCNT) as delivery vehicles for DNA to algal chloroplasts. We examined the impact of PEI-SWCNT charge and PEI polymer size (25k vs 10k) on the uptake into chloroplasts of wildtype and cell wall knockout mutant strains of the green algae Chlamydomonas reinhardtii. To assess the delivery of DNA bound to PEI-SWCNT, we used confocal microscopy and colocalization analysis of chloroplast autofluorescence with fluorophore-labeled single-stranded GT15 DNA. We found that highly charged DNA-PEI25k-SWNCT have a statistically significant higher percentage of DNA colocalization events with algal chloroplasts (22.28% ± 6.42, 1 hr) over 1-3 hours than DNA-PEI10k-SWNCT (7.23% ± 0.68, 1 hr) (P<0.01). We determined the biocompatibility of DNA-PEI-SWCNT through assays for living algae cells, reactive oxygen species (ROS) generation, and in vivo chlorophyll assays. Through these assays, it was shown that algae exposed to DNA-PEI25k-SWCNT (30 fg/cell) and DNA-PEI10k-SWCNT (300 fg/cell) were viable over 4 days and had little impact on oxidative stress levels. DNA coated PEI-SWCNT transiently increased ROS levels within one hour of exposure to nanomaterials (30- 300 fg/cell) both in the wildtype strain and cell-wall knockout strain, followed by ROS decline to normal levels due to reaction with antioxidant glutathione and lipid membranes. PEI-SWCNT can act as biological carriers for delivering biomolecules such as DNA and have the potential to become novel tools for chloroplast biotechnology and synthetic biology. 
    more » « less
  5. Short chain perfluoroalkyl substances (PFAS), replacements for long chain legacy PFAS such as perfluorooctanoic acid (PFOA), have similar toxicity, negative health effects, and exceptional persistence as long chain PFAS. β-Cyclodextrin (β-CD) is a powerful host–guest complexing agent for a number of legacy PFAS, suggesting potential β-CD-based remediation processes. We report herein that the addition of charged functional groups at the perimeter of β-CD has a pronounced influence on the strength of the β-CD:PFAS complex. The presence of a positively charged amine functionality on the perimeter of β-CD significantly increases the complexation of legacy and short chain PFAS. We assigned the enhanced complexation to electrostatic attraction between the negatively charged PFAS head group and the positively charged β-CD derivative. In comparison to neutral β-CD, addition of a negative charge to β-CD decreases complexation to PFAS due to electrostatic repulsion between the negatively charged polar head group of PFAS and the negatively charged β-CD. 19F NMR titration experiments illustrate the complexation of short chain PFAS by positive charged β-CDs over neutral β-CD, with increases up to 20 times depending on the PFAS guest. The results give further understanding to the nature of the β-CD:PFAS host–guest complex and the various intermolecular forces that drive complexation. Positively charged β-CDs appear to be potential complexing agents for remediation of short chain PFAS. 
    more » « less