skip to main content


Title: Multiple origins of lipid‐based structural colors contribute to a gradient of fruit colors in Viburnum (Adoxaceae)
Summary

Structural color is poorly known in plants relative to animals. In fruits, only a handful of cases have been described, including inViburnum tinuswhere the blue color results from a disordered multilayered reflector made of lipid droplets. Here, we examine the broader evolutionary context of fruit structural color across the genusViburnum.

We obtained fresh and herbarium fruit material from 30Viburnumspecies spanning the phylogeny and used transmission electron microscopy, optical simulations, and ancestral state reconstruction to identify the presence/absence of photonic structures in each species, understand the mechanism producing structural color in newly identified species, relate the development of cell wall structure to reflectance inViburnum dentatum, and describe the evolution of cell wall architecture acrossViburnum.

We identify at least two (possibly three) origins of blue fruit color inViburnumin species which produce large photonic structures made of lipid droplets embedded in the cell wall and which reflect blue light.

Examining the full spectrum of mechanisms producing color in pl, including structural color as well as pigments, will yield further insights into the diversity, ecology, and evolution of fruit color.

 
more » « less
Award ID(s):
1907293
NSF-PAR ID:
10485235
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
New Phytologist
Date Published:
Journal Name:
New Phytologist
Volume:
237
Issue:
2
ISSN:
0028-646X
Page Range / eLocation ID:
643 to 655
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    The majority of plant colours are produced by anthocyanin and carotenoid pigments, but colouration obtained by nanostructured materials (i.e. structural colours) is increasingly reported in plants. Here, we identify a multilayer photonic structure in the fruits ofLantana strigocamaraand compare it with a similar structure inViburnum tinusfruits.

    We used a combination of transmission electron microscopy (EM), serial EM tomography, scanning force microscopy and optical simulations to characterise the photonic structure inL. strigocamara. We also examine the development of the structure during maturation.

    We found that the structural colour derives from a disordered, multilayered reflector consisting of lipid droplets ofc.105 nm that form a plate‐like structure in 3D. This structure begins to form early in development and reflects blue wavelengths of light with increasing intensity over time as the structure develops. The materials used are likely to be lipid polymers.

    Lantana strigocamarais the second origin of a lipid‐based photonic structure, convergently evolved with the structure inViburnum tinus. Chemical differences between the lipids inL. strigocamaraand those ofV. tinussuggest a distinct evolutionary trajectory with implications for the signalling function of structural colours in fruits.

     
    more » « less
  2. Summary

    All aerial epidermal cells in land plants are covered by the cuticle, an extracellular hydrophobic layer that provides protection against abiotic and biotic stresses and prevents organ fusion during development.

    Genetic and morphological analysis of the classic maizeadherent1(ad1) mutant was combined with genome‐wide binding analysis of the maize MYB transcription factor FUSED LEAVES1 (FDL1), coupled with transcriptional profiling offdl1mutants.

    We show thatAD1encodes an epidermally‐expressed 3‐KETOACYL‐CoA SYNTHASE (KCS) belonging to a functionally uncharacterized clade of KCS enzymes involved in cuticular wax biosynthesis. Wax analysis inad1mutants indicates thatAD1functions in the formation of very‐long‐chain wax components. We demonstrate that FDL1 directly binds to CCAACC core motifs present inAD1regulatory regions to activate its expression. Over 2000 additional target genes of FDL1, including many involved in cuticle formation, drought response and cell wall organization, were also identified.

    Our results identify a regulatory module of cuticle biosynthesis in maize that is conserved across monocots and eudicots, and highlight previously undescribed factors in lipid metabolism, transport and signaling that coordinate organ development and cuticle formation.

     
    more » « less
  3. Societal Impact Statement

    Fleshy fruits provide humans with many flavorful and nutritious crops. Understanding the diversity of these plants is fundamental to managing agriculture and food security in a changing world. This study surveyed fruit trait variation across species of tomato wild relatives and explored associations among color, size, shape, sugars, and acids. These wild tomato species native to South America can be interbred with the economically important cultivated tomato. Beyond its application to tomatoes, deepening our knowledge of how fruit traits evolve together is valuable to crop improvement efforts aimed at breeding more nutritious and appealing varieties of fruits.

    Summary

    Fleshy fruits display a striking diversity of traits, many of which are important for agriculture. The evolutionary drivers of this variation are not well understood, and most studies have relied on variation found in the wild. Few studies have explored this question on a fine‐grained scale with a group of recently diverged species while controlling for environmental effects.

    We developed the tomato clade as a novel system for fruit trait evolution research by presenting the first common garden‐based systematic survey of variation and phylogenetic signal in color, nutrition, and morphology traits across all 13 species of tomato wild relatives (Solanum sect.Lycopersicon). We laid the groundwork for further testing of potential evolutionary drivers by assessing patterns of clustering and correlation among disperser‐relevant fruit traits as well as historical climate variables.

    We found evidence of two distinct clusters of associated fruit traits defined by color, sugar type, and malic acid concentration. We also observed correlations between a fruit's external appearance and internal nutrient content that could function as honest signals to dispersers. Analyses of historical climate and soil variables revealed an association between red/orange/yellow fruits and high annual average temperature.

    Our results establish the tomato clade as a promising system for testing hypotheses on the drivers of divergence behind early‐stage fleshy fruit evolution, particularly selective pressure from frugivores.

     
    more » « less
  4. Summary

    Evolution of complex phenotypes depends on the adaptive importance of individual traits, and the developmental changes required to modify traits. Floral syndromes are complex adaptations to pollinators that include color, nectar, and shape variation. Hummingbird‐adapted flowers have evolved a remarkable number of times from bee‐adapted ancestors inPenstemon, and previous work demonstrates that color over shape better distinguishes bee from hummingbird syndromes. Here, we examined the relative importance of nectar volume and nectary development in definingPenstemonpollination syndromes.

    We tested the evolutionary association of nectar volume and nectary area with pollination syndrome across 19Penstemonspecies. In selected species, we assessed cellular‐level processes shaping nectary size. Within a segregating population from an intersyndrome cross, we assessed trait correlations between nectar volume, nectary area, and the size of stamens on which nectaries develop.

    Nectar volume and nectary area displayed an evolutionary association with pollination syndrome. These traits were correlated within a genetic cross, suggesting a mechanistic link. Nectary area evolution involves parallel processes of cell expansion and proliferation.

    Our results demonstrate that changes to nectary patterning are an important contributor to pollination syndrome diversity and provide further evidence that repeated origins of hummingbird adaptation involve parallel developmental processes inPenstemon.

     
    more » « less
  5. Summary

    Humans have domesticated diverse species from across the plant kingdom, yet much of our foundational knowledge of domestication has come from studies investigating relatively few of the most important annual food crops. Here, we examine the impacts of domestication on genetic diversity in a tropical perennial fruit species, mango (Mangifera indica).

    We used restriction site associatedDNAsequencing to generate genomic single nucleotide polymorphism (SNP) data from 106 mango cultivars from seven geographical regions along with 52 samples of closely related species and unidentified cultivars to identify centers of mango genetic diversity and examine how post‐domestication dispersal shaped the geographical distribution of diversity.

    We identify two gene pools of cultivated mango, representing Indian and Southeast Asian germplasm. We found no significant genetic bottleneck associated with the introduction of mango into new regions of the world. By contrast, we show that mango populations in introduced regions have elevated levels of diversity.

    Our results suggest that mango has a more complex history of domestication than previously supposed, perhaps including multiple domestication events, hybridization and regional selection. Our work has direct implications for mango breeding and genebank management, and also builds on recent efforts to understand how woody perennial crops respond to domestication.

     
    more » « less