Summary The majority of plant colours are produced by anthocyanin and carotenoid pigments, but colouration obtained by nanostructured materials (i.e. structural colours) is increasingly reported in plants. Here, we identify a multilayer photonic structure in the fruits ofLantana strigocamaraand compare it with a similar structure inViburnum tinusfruits.We used a combination of transmission electron microscopy (EM), serial EM tomography, scanning force microscopy and optical simulations to characterise the photonic structure inL. strigocamara. We also examine the development of the structure during maturation.We found that the structural colour derives from a disordered, multilayered reflector consisting of lipid droplets ofc.105 nm that form a plate‐like structure in 3D. This structure begins to form early in development and reflects blue wavelengths of light with increasing intensity over time as the structure develops. The materials used are likely to be lipid polymers.Lantana strigocamarais the second origin of a lipid‐based photonic structure, convergently evolved with the structure inViburnum tinus. Chemical differences between the lipids inL. strigocamaraand those ofV. tinussuggest a distinct evolutionary trajectory with implications for the signalling function of structural colours in fruits.
more »
« less
Multiple origins of lipid‐based structural colors contribute to a gradient of fruit colors in Viburnum (Adoxaceae)
Summary Structural color is poorly known in plants relative to animals. In fruits, only a handful of cases have been described, including inViburnum tinuswhere the blue color results from a disordered multilayered reflector made of lipid droplets. Here, we examine the broader evolutionary context of fruit structural color across the genusViburnum.We obtained fresh and herbarium fruit material from 30Viburnumspecies spanning the phylogeny and used transmission electron microscopy, optical simulations, and ancestral state reconstruction to identify the presence/absence of photonic structures in each species, understand the mechanism producing structural color in newly identified species, relate the development of cell wall structure to reflectance inViburnum dentatum, and describe the evolution of cell wall architecture acrossViburnum.We identify at least two (possibly three) origins of blue fruit color inViburnumin species which produce large photonic structures made of lipid droplets embedded in the cell wall and which reflect blue light.Examining the full spectrum of mechanisms producing color in pl, including structural color as well as pigments, will yield further insights into the diversity, ecology, and evolution of fruit color.
more »
« less
- Award ID(s):
- 1907293
- PAR ID:
- 10485235
- Publisher / Repository:
- New Phytologist
- Date Published:
- Journal Name:
- New Phytologist
- Volume:
- 237
- Issue:
- 2
- ISSN:
- 0028-646X
- Page Range / eLocation ID:
- 643 to 655
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary Abscission is predetermined in specialized cell layers called the abscission zone (AZ) and activated by developmental or environmental signals. In the grass family, most identified AZ genes regulate AZ anatomy, which differs among lineages. A YABBY transcription factor,SHATTERING1(SH1), is a domestication gene regulating abscission in multiple cereals, including rice andSetaria. In rice,SH1inhibits lignification specifically in the AZ. However, the AZ ofSetariais nonlignified throughout, raising the question of howSH1functions in species without lignification.Crispr‐Cas9 knockout mutants ofSH1were generated inSetaria viridisand characterized with histology, cell wall and auxin immunofluorescence, transmission electron microscopy, hormonal treatment and RNA‐Seq analysis.Thesh1mutant lacks shattering, as expected. No differences in cell anatomy or cell wall components including lignin were observed betweensh1and the wild‐type (WT) until abscission occurs. Chloroplasts degenerated in the AZ of WT before abscission, but degeneration was suppressed by auxin treatment. Auxin distribution and expression of auxin‐related genes differed between WT andsh1, with the signal of an antibody to auxin detected in thesh1chloroplast.SH1inSetariais required for activation of abscission through auxin signaling, which is not reported in other grass species.more » « less
-
Summary All aerial epidermal cells in land plants are covered by the cuticle, an extracellular hydrophobic layer that provides protection against abiotic and biotic stresses and prevents organ fusion during development.Genetic and morphological analysis of the classic maizeadherent1(ad1) mutant was combined with genome‐wide binding analysis of the maize MYB transcription factor FUSED LEAVES1 (FDL1), coupled with transcriptional profiling offdl1mutants.We show thatAD1encodes an epidermally‐expressed 3‐KETOACYL‐CoA SYNTHASE (KCS) belonging to a functionally uncharacterized clade of KCS enzymes involved in cuticular wax biosynthesis. Wax analysis inad1mutants indicates thatAD1functions in the formation of very‐long‐chain wax components. We demonstrate that FDL1 directly binds to CCAACC core motifs present inAD1regulatory regions to activate its expression. Over 2000 additional target genes of FDL1, including many involved in cuticle formation, drought response and cell wall organization, were also identified.Our results identify a regulatory module of cuticle biosynthesis in maize that is conserved across monocots and eudicots, and highlight previously undescribed factors in lipid metabolism, transport and signaling that coordinate organ development and cuticle formation.more » « less
-
Abstract Plants produce an astonishingly diverse array of specialized metabolites. A crucial step in understanding the origin of such chemodiversity is describing how chemodiversity manifests across the spatial and ontogenetic scales relevant to plant–biotic interactions.Focusing on 21 sympatric species ofPsychotriaandPalicourea sensu lato(Rubiaceae), we describe patterns of specialized metabolite diversity across spatial and ontogenetic scales using a combination of field collections, untargeted metabolomics, and ecoinformatics. We compare α, β, and γ diversity of specialized metabolites in expanding leaves, unripe pulp, immature seed, ripe pulp, mature seed, and fine roots.Within species, fruit tissues from across ontogenetic stages had ≥α diversity than leaves, and ≤β diversity than leaves. Pooled across species, fruit tissues and ontogenetic stages had the highest γ diversity of all organs, and fruit tissues and ontogenetic stages combined had a higher incidence of organ‐specific mass spectral features than leaves. Roots had ≤α diversity than leaves and the lowest β and γ diversity of all organs. Phylogenetic correlations of chemical distance varied by plant organ and chemical class.Our results describe patterns of specialized metabolite diversity across organs and species and provide support for organ‐specific contributions to plant chemodiversity. This study contributes to the growing understanding within plant evolutionary ecology of the biological scales of specialized metabolite diversification. Future studies combining our data on specialized metabolite diversity with biotic interaction data and experiments can test existing hypotheses on the roles of ecological interactions in the evolution of chemodiversity.more » « less
-
Summary A fewCapsicum(pepper) species produce yellow‐colored floral nectar, but the chemical identity and biological function of the yellow pigment are unknown.A combination of analytical biochemistry techniques was used to identify the pigment that givesCapsicum baccatumandCapsicum pubescensnectars their yellow color. Microbial growth assays, visual modeling, and honey bee preference tests for artificial nectars containing riboflavin were used to assess potential biological roles for the nectar pigment.High concentrations of riboflavin (vitamin B2) give the nectars their intense yellow color. Nectars containing riboflavin generate reactive oxygen species when exposed to light and reduce microbial growth. Visual modeling also indicates that the yellow color is highly conspicuous to bees within the context of the flower. Lastly, field experiments demonstrate that honey bees prefer artificial nectars containing riboflavin.SomeCapsicumnectars contain a yellow‐colored vitamin that appears to play roles in (1) limiting microbial growth, (2) the visual attraction of bees, and (3) as a reward to nectar‐feeding flower visitors (potential pollinators), which is especially interesting since riboflavin is an essential nutrient for brood rearing in insects. These results cumulatively suggest that the riboflavin found in someCapsicumnectars has several functions.more » « less
An official website of the United States government

