Sunflowers are famous for their ability to track the sun throughout the day and then reorient at night to face east the following morning. This occurs by differential growth patterns, with the east sides of stems growing more during the day and the west sides of stems growing more at night. This process, termed heliotropism, is generally believed to be a specialized form of phototropism; however, the underlying mechanism is unknown. To better understand heliotropism, we compared gene expression patterns in plants undergoing phototropism in a controlled environment and in plants initiating and maintaining heliotropic growth in the field. We found the expected transcriptome signatures of phototropin-mediated phototropism in sunflower stems bending towards monochromatic blue light. Surprisingly, the expression patterns of these phototropism-regulated genes are quite different in heliotropic plants. Most genes rapidly induced during phototropism display only minor differences in expression across solar tracking stems. However, some genes that are both rapidly induced during phototropism and are implicated in growth responses to foliar shade are rapidly induced on the west sides of stems at the onset of heliotropism, suggesting a possible role for red light photoreceptors in solar tracking. To test the involvement of different photoreceptor signaling pathways in heliotropism, we modulated the light environment of plants initiating solar tracking. We found that depletion of either red and far-red light or blue light did not hinder the initiation or maintenance of heliotropism in the field. Together, our results suggest that the transcriptional regulation of heliotropism is distinct from phototropin-mediated phototropism and likely involves inputs from multiple light signaling pathways.
more » « less- Award ID(s):
- 1759942
- PAR ID:
- 10485241
- Editor(s):
- Estelle, Mark
- Publisher / Repository:
- Public Library of Science
- Date Published:
- Journal Name:
- PLOS Biology
- Volume:
- 21
- Issue:
- 10
- ISSN:
- 1545-7885
- Page Range / eLocation ID:
- e3002344
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Shade-intolerant plants rapidly elongate their stems, branches, and leaf stalks to compete with neighboring vegetation, maximizing sunlight capture for photosynthesis. This rapid growth adaptation, known as the shade-avoidance response (SAR), comes at a cost: reduced biomass, crop yield, and root growth. Significant progress has been made on the mechanistic understanding of hypocotyl elongation during SAR; however, the molecular interpretation of root growth repression is not well understood. Here, we explore the mechanisms by which SAR induced by low red:far-red light restricts primary and lateral root (LR) growth. By analyzing the whole-genome transcriptome, we identified a core set of shade-induced genes in roots of Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum) seedlings grown in the shade. Abiotic and biotic stressors also induce many of these shade-induced genes and are predominantly regulated by WRKY transcription factors. Correspondingly, a majority of WRKY genes were among the shade-induced genes. Functional analysis using transgenics of these shade-induced WRKYs revealed that their role is essentially to restrict primary root and LR growth in the shade; captivatingly, they did not affect hypocotyl elongation. Similarly, we also found that ethylene hormone signaling is necessary for limiting root growth in the shade. We propose that during SAR, shade-induced WRKY26, 45, and 75, and ethylene reprogram gene expression in the root to restrict its growth and development.more » « less
-
The proper timing of flowering, which is key to maximize reproductive success and yield, relies in many plant species on the coordination between environmental cues and endogenous developmental programs. The perception of changes in day length is one of the most reliable cues of seasonal change, and this involves the interplay between the sensing of light signals and the circadian clock. Here, we describe a Brachypodium distachyon mutant allele of the evening complex protein EARLY FLOWERING 3 (ELF3). We show that the elf3 mutant flowers more rapidly than wild type plants in short days as well as under longer photoperiods but, in very long (20 h) days, flowering is equally rapid in elf3 and wild type. Furthermore, flowering in the elf3 mutant is still sensitive to vernalization, but not to ambient temperature changes. Molecular analyses revealed that the expression of a short-day marker gene is suppressed in elf3 grown in short days, and the expression patterns of clock genes and flowering time regulators are altered. We also explored the mechanisms of photoperiodic perception in temperate grasses by exposing B. distachyon plants grown under a 12 h photoperiod to a daily night break consisting of a mixture of red and far-red light. We showed that 2 h breaks are sufficient to accelerate flowering in B. distachyon under non-inductive photoperiods and that this acceleration of flowering is mediated by red light. Finally, we discuss advances and perspectives for research on the perception of photoperiod in temperate grasses.more » « less
-
Plants respond to neighbor shade by increasing stem and petiole elongation. Shade, sensed by phytochrome photoreceptors, causes stabilization of
PHYTOCHROME INTERACTING FACTOR proteins and subsequent induction ofYUCCA auxin biosynthetic genes. To investigate the role ofYUCCA genes in phytochrome-mediated elongation, we examined auxin signaling kinetics after an end-of-day far-red (EOD-FR) light treatment, and found that an auxin responsive reporter is rapidly induced within 2 hours of far-red exposure.YUCCA2, 5, 8, and9 are all induced with similar kinetics suggesting that theycould act redundantly to control shade-mediated elongation. To test this hypothesis we constructed a yucca2, 5, 8, 9 quadruple mutant and found that the hypocotyl and petiole EOD-FR and shade avoidance responses are completely disrupted. This work shows thatYUCCA auxin biosynthetic genes are essential for detectable shade avoidance and thatYUCCA genes are important for petiole shade avoidance. -
The unicellular green alga
Chlamydomonas reinhardtii displays metabolic flexibility in response to a changing environment. We analyzed expression patterns of its three genomes in cells grown under light–dark cycles. Nearly 85% of transcribed genes show differential expression, with different sets of transcripts being up-regulated over the course of the day to coordinate cellular growth before undergoing cell division. Parallel measurements of select metabolites and pigments, physiological parameters, and a subset of proteins allow us to infer metabolic events and to evaluate the impact of the transcriptome on the proteome. Among the findings are the observations thatChlamydomonas exhibits lower respiratory activity at night compared with the day; multiple fermentation pathways, some oxygen-sensitive, are expressed at night in aerated cultures; we propose that the ferredoxin, FDX9, is potentially the electron donor to hydrogenases. The light stress-responsive genesPSBS ,LHCSR1 , andLHCSR3 show an acute response to lights-on at dawn under abrupt dark-to-light transitions, whileLHCSR3 genes also exhibit a later, second burst in expression in the middle of the day dependent on light intensity. Each response to light (acute and sustained) can be selectively activated under specific conditions. Our expression dataset, complemented with coexpression networks and metabolite profiling, should constitute an excellent resource for the algal and plant communities. -
Plant networks of oscillating genes coordinate internal processes with external cues, contributing to increased fitness. We hypothesized that the response to submergence stress may dynamically change during different times of the day. In this work, we determined the transcriptome (RNA sequencing) of the model monocotyledonous plant, Brachypodium distachyon, during a day of submergence stress, low light, and normal growth. Two ecotypes of differential tolerance, Bd21 (sensitive) and Bd21-3 (tolerant), were included. We submerged 15-day-old plants under a long-day diurnal cycle (16 h light/8 h dark) and collected samples after 8 h of submergence at ZT0 (dawn), ZT8 (midday), ZT16 (dusk), ZT20 (midnight), and ZT24 (dawn). Rhythmic processes were enriched both with up- and down-regulated genes, and clustering highlighted that the morning and daytime oscillator components (PRRs) show peak expression in the night, and a decrease in the amplitude of the clock genes (GI, LHY, RVE) was observed. Outputs included photosynthesis-related genes losing their known rhythmic expression. Up-regulated genes included oscillating suppressors of growth, hormone-related genes with new late zeniths (e.g., JAZ1, ZEP), and mitochondrial and carbohydrate signaling genes with shifted zeniths. The results highlighted genes up-regulated in the tolerant ecotype such as METALLOTHONEIN3 and ATPase INHIBITOR FACTOR. Finally, we show by luciferase assays that Arabidopsis thaliana clock genes are also altered by submergence changing their amplitude and phase. This study can guide the research of chronocultural strategies and diurnal-associated tolerance mechanisms.more » « less