skip to main content


This content will become publicly available on September 27, 2024

Title: Thermotolerant coral–algal mutualisms maintain high rates of nutrient transfer while exposed to heat stress

Symbiotic mutualisms are essential to ecosystems and numerous species across the tree of life. For reef-building corals, the benefits of their association with endosymbiotic dinoflagellates differ within and across taxa, and nutrient exchange between these partners is influenced by environmental conditions. Furthermore, it is widely assumed that corals associated with symbionts in the genusDurusdiniumtolerate high thermal stress at the expense of lower nutrient exchange to support coral growth. We traced both inorganic carbon (H13CO3) and nitrate (15NO3) uptake by divergent symbiont species and quantified nutrient transfer to the host coral under normal temperatures as well as in colonies exposed to high thermal stress. Colonies representative of diverse coral taxa associated withDurusdinium trenchiiorCladocopiumspp. exhibited similar nutrient exchange under ambient conditions. By contrast, heat-exposed colonies withD. trenchiiexperienced less physiological stress than conspecifics withCladocopiumspp. while high carbon assimilation and nutrient transfer to the host was maintained. This discovery differs from the prevailing notion that these mutualisms inevitably suffer trade-offs in physiological performance. These findings emphasize that many host–symbiont combinations adapted to high-temperature equatorial environments are high-functioning mutualisms; and why their increased prevalence is likely to be important to the future productivity and stability of coral reef ecosystems.

 
more » « less
Award ID(s):
1719684
NSF-PAR ID:
10485401
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
The Royal Society
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
290
Issue:
2007
ISSN:
0962-8452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Reef‐building corals in the genusPoritesare one of the most important constituents of Indo‐Pacific reefs. Many species within this genus tolerate abnormally warm water and exhibit high specificity for particular kinds of endosymbiotic dinoflagellates that cope with thermal stress better than those living in other corals. Still, during extreme ocean heating, somePoritesexhibit differences in their stress tolerance. While corals have different physiological qualities, it remains unknown whether the stability and performance of these mutualisms is influenced by the physiology and genetic relatedness of their symbionts. We investigated two ubiquitous Pacific reef corals,Porites rusandPorites cylindrica, from warmer inshore and cooler offshore reef systems in Palau. While these corals harbored a similar kind of symbiont in the genusCladocopium(within the ITS2C15 subclade), rapidly evolving genetic markers revealed evolutionarily diverged lineages corresponding to eachPoritesspecies living in each reef habitat. Furthermore, these closely relatedCladocopiumlineages were differentiated by their densities in host tissues, cell volume, chlorophyll concentration, gross photosynthesis, and photoprotective pathways. When assessed using several physiological proxies, these previously undifferentiated symbionts contrasted in their tolerance to thermal stress. Symbionts withinP.cylindricawere relatively unaffected by exposure to 32℃ for 14 days, whereasP.ruscolonies lost substantial numbers of photochemically compromised symbionts. Heating reduced the ability of the offshore symbiont associated withP.rusto translocate carbon to the coral. By contrast, high temperatures enhanced symbiont carbon assimilation and delivery to the coral skeleton of inshoreP.cylindrica. This study indicates that large physiological differences exist even among closely related symbionts, with significant implications for thermal susceptibility among reef‐buildingPorites.

     
    more » « less
  2. Abstract

    Algal symbiont shuffling in favour of more thermotolerant species has been shown to enhance coral resistance to heat‐stress. Yet, the mechanistic underpinnings and long‐term implications of these changes are poorly understood. This work studied the modifications in coral DNA methylation, an epigenetic mechanism involved in coral acclimatization, in response to symbiont manipulation and subsequent heat stress exposure. Symbiont composition was manipulated in the great star coralMontastraea cavernosathrough controlled thermal bleaching and recovery, producing paired ramets of three genets dominated by either their native symbionts (genusCladocopium) or the thermotolerant species (Durusdinium trenchi). Single‐base genome‐wide analyses showed significant modifications in DNA methylation concentrated in intergenic regions, introns and transposable elements. Remarkably, DNA methylation changes in response to heat stress were dependent on the dominant symbiont, with twice as many differentially methylated regions found in heat‐stressed corals hosting different symbionts (Cladocopiumvs.D.trenchii) compared to all other comparisons. Interestingly, while differential gene body methylation was not correlated with gene expression, an enrichment in differentially methylated regions was evident in repetitive genome regions. Overall, these results suggest that changes in algal symbionts favouring heat tolerant associations are accompanied by changes in DNA methylation in the coral host. The implications of these results for coral adaptation, along with future avenues of research based on current knowledge gaps, are discussed in the present work.

     
    more » « less
  3. Abstract

    Some corals may become more resistant to bleaching by shuffling their Symbiodiniaceae communities toward thermally tolerant species, and manipulations to boost the abundance of these symbionts in corals may increase resilience in warming oceans. However, the thermotolerant symbiontDurusdinium trenchiimay reduce growth and fecundity in Caribbean corals, and these tradeoffs need to be better understood as this symbiont spreads through the region. We sought to understand howD. trenchiimodulates coral gene expression by manipulating symbiont communities inMontastraea cavernosato produce replicate ramets containingD. trenchiitogether with paired ramets of these same genets (n = 3) containingCladocopiumC3 symbionts. We then examined differences in global gene expression between corals hostingDurusdiniumandCladocopiumunder control temperatures, and in response to short‐term heat stress. We identified numerous transcriptional differences associated with symbiont identity, which explained 2%–14% of the transcriptional variance. Corals withD. trenchiiupregulated genes related to translation, ribosomal structure and biogenesis, and downregulated genes related to extracellular structures, and carbohydrate and lipid transport and metabolism, relative to corals withCladocopium. Unexpectedly, these changes were similar to those observed inCladocopium‐dominated corals in response to heat stress, suggesting that thermotolerantD. trenchiimay cause corals to increase expression of heat stress‐responsive genes, explaining both the increased heat tolerance and the associated energetic tradeoffs in corals containingD. trenchii. These findings provide insight into the ecological changes occurring on contemporary coral reefs in response to climate change, and the diverse ways in which different symbionts modulate emergent phenotypes of their hosts.

     
    more » « less
  4. Abstract

    Coral reefs are declining globally as climate change and local water quality press environmental conditions beyond the physiological tolerances of holobionts—the collective of the host and its microbial symbionts. To assess the relationship between symbiont composition and holobiont stress tolerance, community diversity metrics were quantified for dinoflagellate endosymbionts (Family: Symbiodiniaceae) from eightAcropora milleporagenets that thrived under or responded poorly to various stressors. These eight selected genets represent the upper and lower tails of the response distribution of 40 coral genets that were exposed to four stress treatments (and control conditions) in a 10‐day experiment. Specifically, four ‘best performer’ coral genets were analyzed at the end of the experiment because they survived high temperature, highpCO2, bacterial exposure, or combined stressors, whereas four ‘worst performer’ genets were characterized because they experienced substantial mortality under these stressors. At the end of the experiment, seven of eight coral genets mainly hostedCladocopiumsymbionts, whereas the eighth genet was dominated by bothCladocopiumandDurusdiniumsymbionts. Symbiodiniaceae alpha and beta diversity were higher in worst performing genets than in best performing genets. Symbiont communities in worst performers also differed more after stress exposure relative to their controls (based on normalized proportional differences in beta diversity), than did best performers. A generalized joint attribute model estimated the influence of host genet and treatment on Symbiodiniaceae community composition and identified strong associations among particular symbionts and host genet performance, as well as weaker associations with treatment. Although dominant symbiont physiology and function contribute to host performance, these findings emphasize the importance of symbiont community diversity and stochasticity as components of host performance. Our findings also suggest that symbiont community diversity metrics may function as indicators of resilience and have potential applications in diverse disciplines from climate change adaptation to agriculture and medicine.

     
    more » « less
  5. Warming and nutrient limitation are stressors known to weaken the health of microalgae. In situations of stress, access to energy reserves can minimize physiological damage. Because of its widespread requirements in biochemical processes, iron is an important trace metal, especially for photosynthetic organisms. Lowered iron availability in oceans experiencing rising temperatures may contribute to the thermal sensitivity of reef‐building corals, which rely on mutualisms with dinoflagellates to survive. To test the influence of iron concentration on thermal sensitivity, the physiological responses of cultured symbiotic dinoflagellates (genusBreviolum; family Symbiodiniaceae) were evaluated when exposed to increasing temperatures (26 to 30°C) and iron concentrations ranging from replete (500 pM Fe’) to limiting (50 pM Fe’) under a diurnal light cycle with saturating radiance. Declines in photosynthetic efficiency at elevated temperatures indicated sensitivity to heat stress. Furthermore, five times the amount of iron was needed to reach exponential growth during heat stress (50 pM Fe′ at 26–28°C vs. 250 pM Fe′ at 30°C). In treatments where exponential growth was reached,Breviolum psygmophilumgrew faster thanB.minutum, possibly due to greater cellular contents of iron and other trace metals. The metal composition ofB.psygmophilumshifted only at the highest temperature (30°C), whereas changes inB.minutumwere observed at lower temperatures (28°C). The influence of iron availability in modulating each alga’s response to thermal stress suggests the importance of trace metals to the health of coral‐algal mutualisms. Ultimately, a greater ability to acquire scarce metals may improve the tolerance of corals to physiological stressors and contribute to the differences in performance associated with hosting one symbiont species over another.

     
    more » « less