We present a lake-sediment record of pre-Columbian agriculture and fire history from the lowlands of southern Pacific Costa Rica that captures the arrival of maize agriculture at ca. 3360 cal yr BP in the Diquís subregion of the Gran Chiriquí archeological region. Our 4200-year record from Laguna Los Mangos begins 1000 to 2000 years earlier than other lake records from the region and provides the first microfossil and geochemical evidence of vegetation and fire prior to the establishment of maize agriculture. This early portion of the record shows evidence of fire events associated with land clearance or field preparation and maintenance for subsistence activities. Alternatively, these were wildfires ignited unintentionally by people or naturally by lightning or volcanism. Evidence of early maize by ca. 3200 cal yr BP was found at Laguna Zoncho in the southeastern section of the Diquís subregion. Our discovery of early maize agriculture at ca. 3360 cal yr BP in the Laguna Los Mangos watershed in the northwestern portion of the Diquís subregion indicates a rapid adoption of maize agriculture in the region after initial introduction. Pre-Columbian agriculture and fire activity at Los Mangos is nearly continual until historic times, but with a decline after ca. 1170 cal yr BP, coincident with the early Terminal Classic Drought (TCD). We infer a pronounced drying of the lowland environment at Laguna Los Mangos based on a depositional hiatus in the record at ca. 950 during late TCD. Agricultural proxies indicate reduced watershed activity during the ‘Little Ice Age’ following Spanish contact in southern Central America until the 20th century. 
                        more » 
                        « less   
                    
                            
                            Response of diatom communities to climate and human disturbance: A 4200-year record from Costa Rica
                        
                    
    
            This study integrates diatom analysis with existing records of pollen, charcoal, elemental composition, and stable light isotopes to expand upon the 4200-year history of human activity and climate change from Laguna Los Mangos in southern Pacific Costa Rica. We counted diatoms in peroxide-treated samples and analyzed community composition using cluster analysis, revealing four distinct assemblage zones with diatom variability most closely correlated with phosphorus, titanium, and organic content. The earliest assemblage (Zone D, 4150–3430 cal yr BP) was dominated by Encyonema silesiacum and Nitzschia incognita and aligned with a period of deforestation, erosion, and abundant macrophytes. Gomphonema affine proliferated in Zone C (3430–2450 cal yr BP), reflecting increased pH and productivity likely caused by agriculture-induced nutrient loading. We attributed the preservation gap from 3290 to 2970 cal yr BP in Zone C to silica depletion and erosional deposition that induced decline in diatom abundance by diluting valve concentrations in lake sediments. Nitzschia incognita and G. affine became the dominant taxa in Zone B (2450–1400 cal yr BP), likely reflecting eutrophy, increasing conductivity, and drying climate. Dominance of Diadesmis confervacea indicated reduced lake level in Zone A (1400 cal yr BP–modern) at the onset of the Terminal Classic Drought (TCD). A hiatus in the record indicates lake desiccation from 950 to 450 cal yr BP. During the Little Ice Age (LIA), diatoms reflect conditions similar to Zone B indicating increased lake level, circumneutral pH, and eutrophy. Refilling of the lake indicates increased precipitation during the LIA despite evidence of severe regional drought reported at other sites. Variable precipitation during this period likely resulted from the combined effects of Spanish contact, agricultural collapse, forest recovery, and shifts in Atlantic and Pacific climate forcing mechanisms. Overall, the Los Mangos diatom record reflects shallow, slightly alkaline, eutrophic conditions influenced by nutrient enrichment, erosion, and deforestation associated with maize agriculture. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1660185
- PAR ID:
- 10485402
- Publisher / Repository:
- Sage
- Date Published:
- Journal Name:
- The Holocene
- Volume:
- 33
- Issue:
- 12
- ISSN:
- 0959-6836
- Page Range / eLocation ID:
- 1534 to 1546
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We examine major reorganizations of the terrestrial ecosystem around Mono Lake, California during the last deglacial period from 16,000–9,000 cal yr BP using pollen, microcharcoal, and coprophilous fungal spores (Sporormiella) from a deep-water sediment core. The pollen results record the assemblage, decline, and replacement of a mixed wooded community of Sierran and Great Basin taxa with Alkali Sink and Sagebrush Steppe biomes around Mono Lake. In particular, the enigmatic presence ofSequoiadendron-type pollen and its extirpation during the early Holocene hint at substantial biogeographic reorganizations on the Sierran-Great Basin ecotone during deglaciation. Rapid regional hydroclimate changes produced structural alterations in pine–juniper woodlands facilitated by increases in wildfires at 14,800 cal yr BP, 13,900 cal yr BP, and 12,800 cal yr BP. The rapid canopy changes altered the availability of herbaceous understory plants, likely putting pressure on megafauna populations, which declined in a stepwise fashion at 15,000 cal yr BP and 12,700 cal yr BP before final extirpation from Mono Basin at 11,500 cal yr BP. However, wooded vegetation communities overall remained resistant to abrupt hydroclimate changes during the late Pleistocene; instead, they gradually declined and were replaced by Alkali Sink communities in the lowlands as temperature increased into the Early Holocene, and Mono Lake regressed.more » « less
- 
            Abstract Wildfires strongly influence forest ecosystem processes, including carbon and nutrient cycling, and vegetation dynamics. As fire activity increases under changing climate conditions, the ecological and biogeochemical resilience of many forest ecosystems remains unknown.To investigate the resilience of forest ecosystems to changing climate and wildfire activity over decades to millennia, we developed a 4800‐year high‐resolution lake‐sediment record from Silver Lake, Montana, USA (47.360° N, 115.566° W). Charcoal particles, pollen grains, element concentrations and stable isotopes of C and N serve as proxies of past changes in fire, vegetation and ecosystem processes such as nitrogen cycling and soil erosion, within a small subalpine forest watershed. A published lake‐level history from Silver Lake provides a local record of palaeohydrology.A trend towards increased effective moisture over the late Holocene coincided with a distinct shift in the pollen assemblage c. 1900 yr BP, resulting from increased subalpine conifer abundance. Fire activity, inferred from peaks in macroscopic charcoal, decreased significantly after 1900 yr BP, from one fire event every 126 yr (83–184 yr, 95% CI) from 4800 to 1900 yr BP, to one event every 223 yr (175–280 yr) from 1900 yr BP to present.Across the record, individual fire events were followed by two distinct decadal‐scale biogeochemical responses, reflecting differences in ecosystem impacts of fires on watershed processes. These distinct biogeochemical responses were interpreted as reflecting fire severity, highlighting (i) erosion, likely from large or high‐severity fires, and (ii) nutrient transfers and enhanced within‐lake productivity, likely from lower severity or patchier fires. Biogeochemical and vegetation proxies returned to pre‐fire values within decades regardless of the nature of fire effects.Synthesis. Palaeorecords of fire and ecosystem responses provide a novel view revealing past variability in fire effects, analogous to spatial variability in fire severity observed within contemporary wildfires. Overall, the palaeorecord highlights ecosystem resilience to fire across long‐term variability in climate and fire activity. Higher fire frequencies in past millennia relative to the 20th and 21st century suggest that northern Rocky Mountain subalpine ecosystems could remain resilient to future increases in fire activity, provided continued ecosystem recovery within decades.more » « less
- 
            Middle and Late Holocene sediments have not been extensively sampled in Lake Tanganyika, and much remains unknown about the response of the Rift Valley’s largest lake to major environmental shifts during the Holocene, including the termination of the African Humid Period (AHP). Here, we present an integrated study (sedimentology, mineralogy, and geochemistry) of a radiocarbon-dated sediment core from the Kavala Island Ridge (KIR) that reveals paleoenvironmental variability in Lake Tanganyika since the Middle Holocene with decadal to centennial resolution. Massive blue-gray sandy silts represent sediments deposited during the terminal AHP (~5880–4640 cal yr BP), with detrital particle size, carbon concentrations, light stable isotopes, and mineralogy suggesting an influx of river-borne soil organic matter and weathered clay minerals to the lake at that time. Enhanced by the AHP’s warm and wet conditions, chemical weathering and erosion of Lake Tanganyika’s watershed appears to have promoted considerable nutrient recharge to the lake system. Following a relatively gradual termination of the AHP over the period from ~4640 cal yr BP to ~3680 cal yr BP, laminated and organic carbon-rich sediments began accumulating on the KIR. δ15Nbulk, C/N, and hydrogen index data suggest high relative primary production from a mix of algae and cyanobacteria, most likely in response to nutrient availability in the water column under a cooler and seasonally dry climate from ~3680 to 1100 cal yr BP. Sediments deposited during the Common Era show considerable variability in magnetic susceptibility, total organic carbon content, carbon isotopes, and C/N, consistent with dynamic hydroclimate conditions that affected the depositional patterns, including substantial changes around the Medieval Climate Anomaly and Little Ice Age. Data from this study highlight the importance of sedimentary records to constrain boundary conditions in hydroclimate and nutrient flux that can inform long-term ecosystem response in Lake Tanganyika.more » « less
- 
            Abstract High-resolution analysis of a 3.80 m sediment core recovered from Deoria Tal, a mid-elevation lake located at 2393 m a.s.l. in the Garhwal Himalaya, documents long-term and abrupt hydroclimate fluctuations in northern India during the mid- to late Holocene. The sediment chronology, based on ten 14 C dates, indicates the core spans 5200 years. Non-destructive, radiological imaging approaches (X-ray fluorescence (XRF), X-ray imaging, and CT scans) were used to assess the response of the lake system to changing hydroclimatic conditions. Variations in elemental concentrations and sediment density evidenced notable hydroclimate change episodes centered at 4850, 4200, and 3100 cal yr BP. Elevated detrital input, greater sediment density, decreased lake ventilation, and lower autochthonous productivity reflects lake deepening between 4350 and 4200 cal yr BP. An abrupt shift in elemental concentrations and sediment density indicated the onset of lake drawdown at 4200 cal yr BP and a negative hydroclimate anomaly between 4200 and 4050 cal yr BP. Lower detrital flux, decreased sediment density, increased oxygenation, and higher autochthonous productivity, reflects a reduction in lake volume between 3200 and 3100 cal yr BP. The potential link between abrupt climate change at 4200 cal yr BP and the contraction of the Indus civilization is explored.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    