skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optical properties and behavior of whispering gallery mode resonators in complex microsphere configurations: Insights for sensing and information processing applications
Abstract This paper delves into the intricate world of whispering gallery mode (WGM) resonators within complex microsphere configurations, exploring their optical properties and behavior. Integrated with optical sensing and processing technology, WGM resonators offer compact size, high sensitivity, rapid response, and tunability. The study investigates the impact of configuration, size, excitation, polarization, and coupling effects on WGM properties. Notable findings include enhanced sensitivity in single microsphere resonators, influence of unequal sphere sizes and excitation locations on WGM modes, and higher quality factors (Q‐factors) in triangular three‐microsphere resonator configurations. Circular polarization was found to elevate Q‐factors, while the nine‐microsphere resonator configuration exhibited increased intensity of dominant WGM peaks with higher laser power, suppressing other peaks. These insights guide the design and optimization of microsphere resonator systems, positioning them for applications in sensing and optical information processing.  more » « less
Award ID(s):
2045640
PAR ID:
10485453
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Nano Select
Volume:
5
Issue:
4
ISSN:
2688-4011
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Temperature is one of the most fundamental physical properties to characterize various physical, chemical, and biological processes. Even a slight change in temperature could have an impact on the status or dynamics of a system. Thus, there is a great need for high-precision and large-dynamic-range temperature measurements. Conventional temperature sensors encounter difficulties in high-precision thermal sensing on the submicron scale. Recently, optical whispering-gallery mode (WGM) sensors have shown promise for many sensing applications, such as thermal sensing, magnetic detection, and biosensing. However, despite their superior sensitivity, the conventional sensing method for WGM resonators relies on tracking the changes in a single mode, which limits the dynamic range constrained by the laser source that has to be fine-tuned in a timely manner to follow the selected mode during the measurement. Moreover, we cannot derive the actual temperature from the spectrum directly but rather derive a relative temperature change. Here, we demonstrate an optical WGM barcode technique involving simultaneous monitoring of the patterns of multiple modes that can provide a direct temperature readout from the spectrum. The measurement relies on the patterns of multiple modes in the WGM spectrum instead of the changes of a particular mode. It can provide us with more information than the single-mode spectrum, such as the precise measurement of actual temperatures. Leveraging the high sensitivity of WGMs and eliminating the need to monitor particular modes, this work lays the foundation for developing a high-performance temperature sensor with not only superior sensitivity but also a broad dynamic range. 
    more » « less
  2. Langfelder, Giacomo (Ed.)
    In this letter, we report on a high-sensitivity whispering gallery mode (WGM) resonator-based air-coupled ultrasound sensor capable of detecting minute pressure variations across an ultrasound frequency spectrum of 0.6–3.5 MHz. The sensor comprises a microspherical glass shell of approximately 450 μm in radius and nonuniform shell thickness of 7–15 μm, which is optically coupled to a tunable laser for resonance excitation. The setup allows for the precise measurement of acoustic signals, benefiting from the high optical Q-factor of ∼2 million of the blown glass microspherical shells. A noise equivalent pressure as low as 40 μPa/ √Hz was obtained at 1.72-MHz ultrasound frequency. A very good correspondence between the simulated axisymmetric resonance frequencies measured using the WGM resonator and a 3D finite-element analysis model in COMSOL was established. The sensor showed an expected linear dependence on the drive voltage of the ultrasound transducer. The distortion of the microspherical shell under acoustic pressure was also independently confirmed using a laser Doppler vibrometer. The sensor’s capability to handle high-frequency ultrasonic waves with significantly better signal-to-noise ratio than conventional piezoelectric- or microphone-based systems is demonstrated, highlighting its suitability for advanced photoacoustic applications. 
    more » « less
  3. On-chip resonators are promising candidates for applications in a wide range of integrated photonic fields, such as communications, spectroscopy, biosensing, and optical filters, due to their compact size, wavelength selectivity, tunability, and flexible structure. The high quality (Q) factor is a main positive attribute of on-chip resonators that makes it possible for them to provide high sensitivity, narrow bandpass, and low power consumption. In this Tutorial, we discuss methods to achieve ultra-high Q factor on-chip resonators on a silicon nitride (Si3N4) platform. We outline the microfabrication processes, including detailed descriptions and recipes for steps such as deposition, lithography, etch, cladding, and etch facet, and then describe the measurement of the Q factor and methods to improve it. We also discuss how to extract the basic loss limit and determine the contribution of each loss source in the waveguide and resonator. We present a modified model for calculating scattering losses, which successfully relates the measured roughness of the waveguide interface to the overall performance of the device. We conclude with a summary of work done to date with low pressure chemical vapor deposition Si3N4 resonator devices, confinement, cross-sectional dimensions, bend radius, Q factor, and propagation loss. 
    more » « less
  4. Abstract High‐quality‐factor microring resonators are highly desirable in many applications. Fabricating a microring resonator typically requires delicate instruments to ensure a smooth side wall of waveguides and 100‐nm critical feature size in the coupling region. In this work, a new method “damascene soft nanoimprinting lithography” is demonstrated that can create high‐fidelity waveguide by simply backfilling an imprinted cladding template with a high refractive index polymer core. This method can easily realize high Q‐factor polymer microring resonators (e.g., ≈5 × 105around 770 nm wavelength) without the use of any expensive instruments and can be conducted in a normal lab environment. The high Q‐factors can be attributed to the residual layer‐free feature and controllable meniscus cross‐section profile of the filled polymer core. Furthermore, the new method is compatible with different polymers, yields low fabrication defects, enables new functionalities, and allows flexible substrate. These benefits can broaden the applicability of the fabricated microring resonator. 
    more » « less
  5. Mann, Sander; Vellucci, Stefano (Ed.)
    We study the rise of exceptional points of degeneracy (EPD) in various distinct circuit configurations such as gyrator-based coupled resonators, coupled resonators with PT-symmetry, and in a single resonator with a time-varying component. In particular, we analyze their high sensitivity to changes in resistance, capacitance, and inductance and show the high sensitivity of the resonance frequency to perturbations. We also investigate stability and instability conditions for these configurations; for example, the effect of losses in the gyrator-based circuit leads to instability, and it may break the symmetry in the PT-symmetry-based circuit, also resulting in instabilities. Instability in the PT-symmetry circuit is also generated by breaking PT-symmetry when one element (e.g., a capacitor) is perturbed due to sensing. We have turned this instability “inconvenience” to an advantage, and we investigate the effect of nonlinear gain in the PT-symmetry coupled-resonator circuit and how this leads to an oscillator with oscillation frequency very sensitive to perturbation. The circuits studied in this paper have the potential to lead the way for a more efficient generation of high-sensitivity sensors that can detect very small changes in chemical, biological, or physical quantities. 
    more » « less